

ANALIZA CALIDAD MADRID, S.L.

Dirección: Avda. Castilla, 32 nave 76. Pol. Ind. San Fernando; 28830 San Fernando de Henares (Madrid)

Norma de referencia: UNE-EN ISO/IEC 17025:2017

Actividad: Ensayo

Acreditación nº: 1013/LE2934

Fecha de entrada en vigor: 07/03/2025

ALCANCE DE LA ACREDITACIÓN

(Rev. 3 fecha 08/09/2025)

Instalaciones donde se llevan a cabo las actividades cubiertas por esta acreditación

Código

Travesía de Iván de Vargas 3; 28019 Madrid

Actividades in situ

Ensayos en el sector medioambiental

<u>Índice</u>

MUESTRAS LÍQUIDAS	$\langle \cdot \langle \cdot \langle \cdot \rangle \rangle$
Aguas de consumo y aguas envasadas	
	~ 10
II. Análisis físico-químicos in situ	1 V // Y
Aguas de consumo	
Aguas continentales	
Aguas residuales	
III. Toma de muestra	
Aguas de consumo	
Aguas residuales	

MUESTRAS LÍQUIDAS

I. Análisis físico-químicos

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y aguas envasadas		
pH	PE-Q-AG-001	Α
(1 - 13 uds. de pH) ()	Método interno basado en:	
	UNE-EN ISO 10523	
Conductividad	PE-Q-AG-002	Α
(15 - 40000 μ\$/em)	Método interno basado en:	
	UNE-EN 27888	
Clorures portitulación volumétrica	PE-Q-AG-013	Α
(≥ 5 mg/L)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Método interno basado en:	
	UNE-ISO 9297	
Cloro libre, combinado y total por titulación volumétrica	PE-Q-AG-008	Α
(≥ 0,1 mg/l)	Método interno basado en:	
	SM 4500-CI F	

ENAC es firmante de los Acuerdos de Reconocimiento Mutuo establecidos en el seno de la European co-operation for Accreditation (EA) y de las organizaciones internacionales de organismos de acreditación, ILAC e IAF (www.enac.es)

Código Validación Electrónica: 7682CRjo8Mf3962028

La acreditación mantiene su vigencia hasta notificación en contra. La presente acreditación está sujeta a modificaciones, suspensiones temporales y retirada. Su vigencia puede confirmarse en https://www.enac.es/web/enac/validacion-electronica o haciendo clic aquí

ENSAYO		NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO		
Aguas de con	sumo y aguas envasadas			\Diamond . (\circ)	
Fluoruros por	electrometría			PE-Q-AG-021	\ A
(≥ 0,1 mg/l)				Método interno basado en l	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
				UNE 77044-1	
Amonio por es	spectrofotometría UV-VIS			PE-Q-AG-003 \(\(\) \\\ \	Α
(≥ 0,05 mg/l)				Método interno basado en:	\wedge
				ISO 7150-1	
Nitratos por e	spectrofotometría UV-VIS			PE-Q-AG-005\\	(\mathcal{N}_{A})
(≥ 2 mg/l)				Método interno basado en:	
				SM 4500-NO3-B	///////
Nitritos por es	pectrofotometría UV-VIS		A	PE-Q-AG-004) \ \\ A \\
(≥ 0,02 mg/l)	(≥ 0,02 mg/l)		Método interno basado en .\		
				UNE-EN 26777	
Metales por e	spectrometría de plasma de a	coplamiento in	nductivo (ICP/MS)	RE-Q-AG-090 ((())	[∖] A
Aluminio	(≥ 20 μg/I)	Magnesio	(≥ 1 mg/l)	Método interno basado en:	
Antimonio	(≥ 2 μg/l)	Manganeso	(≥ 2 μg/l)\ \	EPA 6020 B	
Arsénico	(≥ 1 μg/l)	Mercurio	(≥ 0,3 µg;(l)\		
Boro	(≥ 0,3 mg/l)	Níquel	(≥ 5 μg/h) \\	V/*	
Cadmio	(≥ 1 μg/l)	Plomo	(≥ 1/µg/l)/\\\	$\langle \langle \langle \langle \rangle \rangle \rangle \rangle$	
Calcio	(≥ 1 mg/l)	Potasio	(≥1\mg/())\/	7///	
Cobre	(≥ 0,01 mg/l)	Selenio	(≥1 µg/()		
Cromo	(≥ 1 μg/l)	Sodio	(≥\1\mg/l)	(4/2)	
Hierro	(≥ 50 μg/l)	(1)		\triangle (0) \geq)	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
рН	PE-Q-AG-001	Α
(1 - 13 uds. de pH)	Método interno basado en: UNE-EN ISO 10523	
Conductividad	PE-Q-AG-002	Α
(15 - 40000 μS/cm)	Método interno basado en: UNE-EN 27888	
Cloruros por titulación volumetrica	PE-Q-AG-013	Α
(≥ 5 mg/l)	Método interno basado en:	
	UNE-ISO 9297	
Amonio por electrometría	PE-Q-AG-018	Α
(≥ 0,1 mg/l) (\\\\\\	Método interno basado en:	
	SM 4500-NH ₃ D	
Fluoruros por electrometría	PE-Q-AG-021	Α
(≥ 0,1 mg/l) \\	Método interno basado en:	
V(CV) 5	UNE 77044-1	
Fósforo total por espectrofotometría UV-VIS	PE-Q-AG-015	Α
(≥(0,2/mg)()) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Método interno basado en:	
	UNE-EN-ISO 6878	
Nitratos por espectrofotometría UV-VIS	PE-Q-AG-005	Α
(≥ 2 mg/I)	Método interno basado en:	
	SM 4500-NO ₃ ⁻ B	

ENSAYO		NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO		
Aguas contine	ntales			\wedge	
(≥ 0,02 mg/l)		PE-Q-AG-004 Método interno basado en: UNE-EN 26777	A		
Ortofosfatos por espectrofotometría UV-VIS (≥ 0,1 mg P/I)		PE-Q-AG-014 Método interno basado en: SM 4500-P E	A		
Aluminio Antimonio Arsénico Bario Boro Cadmio Calcio Cobalto Cobre Cromo Estaño Estroncio	spectrometría de plasma de ac $(\geq 20 \ \mu g/l)$ $(\geq 2 \ \mu g/l)$ $(\geq 1 \ \mu g/l)$ $(\geq 10 \ \mu g/l)$ $(\geq 10 \ \mu g/l)$ $(\geq 1 \ \mu g/l)$ $(\geq 1 \ \mu g/l)$ $(\geq 2 \ \mu g/l)$ $(\geq 1 \ \mu g/l)$ $(\geq 1 \ \mu g/l)$ $(\geq 2 \ \mu g/l)$ $(\geq 2 \ \mu g/l)$ $(\geq 10 \ \mu g/l)$ $(\geq 10 \ \mu g/l)$	Magnesio Manganeso Mercurio Molibdeno Níquel Plomo Potasio Selenio Sodio Titanio Vanadio Zinc	ductivo (ICP/MS) $(\geq 1 \text{ mg/l})$ $(\geq 2 \text{ µg/l})$ $(\geq 2 \text{ µg/l})$ $(\geq 2 \text{ µg/l})$ $(\geq 1 \text{ µg/l})$ $(\geq 1 \text{ µg/l})$ $(\geq 1 \text{ mg/l})$ $(\geq 1 \text{ µg/l})$ $(\geq 1 µ$	PE-Q-AG-090 Método înterno basado en: EPA 6020 B	

	/ ////	
ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas residuales	\vee	
рН	PE-Q-AG-001	Α
(1 - 13 uds. de pH)	Método interno basado en:	
<u> </u>	UNE-EN ISO 10523	
Conductividad	PE-Q-AG-002	Α
(15 - 40000 μS/cm)	Método interno basado en:	
	UNE-EN 27888	
Sólidos en suspensión	PE-Q-AG-009	Α
(≥ 4 mg/l)	Método interno basado en:	
$\bigvee ()\bigvee$	SM 2540 D	
Aceites y grasas por gravimetría	PE-Q-AG-033	Α
(≥ 5 mg/l)	Método interno basado en:	
	EPA 1664 B	
Amonio por electrometría	PE-Q-AG-018	Α
(≥ 0,1 mg/l)	Método interno basado en:	
	SM 4500-NH ₃ D	
Demanda bioquímica de oxígeno (DBO₅) por electrometría	PE-Q-AG-038	Α
(≥ 5 mg O ₂ /I).	Método interno basado en:	
	SM 5210 B	
Demanda químida de oxígeno (DQO) por titulación volumétrica	PE-Q-AG-037	Α
(≥/25,mg, Q2/l) \	Método interno basado en:	
	SM 5220 C	
Fosforo total por espectrofotometría UV-VIS	PE-Q-AG-015	Α
(≥ 0,2 mg/l)	Método interno basado en:	
	UNE-EN-ISO 6878	

ENSAYO		NORMA/PROCEDIMIENTO DE ENSAYO CÓDIGO		
Aguas residuales				
Ortofosfatos p	or espectrofotometría UV-VIS			PE-Q-AG-014 A
(≥ 0,1 mg P/I)				Método interno basado en:
				SM 4500-P (EV)
Metales totale	es por espectrometría de plas	ma de acopla	miento inductivo	PE-Q-AG-090 ()
(ICP/MS)				Método interno basado en:
Aluminio	(≥ 100 μg/l)	Hierro	(≥ 500 μg/l)	EPA 6020 B
Antimonio	(≥ 10 μg/l)	Manganeso	(≥ 10 μg/l)	$\wedge \wedge \langle \rangle \rangle$
Arsénico	(≥ 10 μg/l)	Mercurio	(≥ 20 μg/l)	//////
Bario	(≥ 500 μg/l)	Molibdeno	(≥ 10 μg/l)	
Cadmio	(≥ 10 μg/l)	Níquel	(≥ 50 μg/l)	
Cobalto	(≥ 10 μg/l)	Plomo	(≥ 10 μg/l) _{\\}	$\langle \langle \langle \langle \rangle \rangle \rangle$
Cobre	(≥ 500 μg/l)	Selenio	(≥ 10 μg/l)\\\	
Cromo	(≥ 10 μg/l)	Titanio	(≥ 10 µg/I)	
Estaño	(≥ 10 μg/l)	Vanadio	(≥ 10 µg/l)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Estroncio	(≥ 10 μg/l)	Zinc	(≥ 500 µg/l)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

II. Análisis físico-químicos in situ

	ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo			
рН	7.117	IT-/-M-001	I
(2 - 12 uds. de pH)		Método interno basado en:	
	$\wedge (\wedge) \setminus \vee$	UNE-EN ISO 10523	
Conductividad		IT-I-M-002	
(15 - 40000 μS/cm)	$\backslash \backslash \backslash \backslash \backslash \rangle$	Método interno basado en:	
		UNE-EN 27888	
Cloro libre y combinado	por espectrofotometría UV-VIS	IT-I-M-005	Ī
(≥ 0,1 mg/l)	1 (1)	Método interno basado en:	
		SM 4500-Cl G	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
pH	IT-I-M-001	1
(2 - 12 uds. de pH)	Método interno basado en: UNE-EN ISO 10523	
Conductividad	IT-I-M-002	I
(15 - 40000 (us/cm)	Método interno basado en: UNE-EN 27888	
Oxígeno disuelto	IT-I-M-003	1
$(\geq 2/mg O_2/I)$	Método interno basado en: SM 4500-O G	
Temperatura	IT-I-M-006	1
(≥ 0´2C)∕	Método interno basado en: SM 2550 B	

ENSAYO	NORMA/PROCEDIMIENTO CÓDIGO DE ENSAYO
Aguas residuales	
рН	IT-I-M-001
(2 - 12 uds. de pH)	Método interno pasado en:
	UNE-EN ISO 10523
Conductividad	IT-I-M-QQ2(\\)
(15 - 40000 μS/cm)	Método interno basado en
	UNE-EN/57888 "UN/////
Oxígeno disuelto	/T-/-(M/-00B/
(≥ 2 mg O ₂ /I)	\\ Método interno basado en:
	(\\\\siM 4500-O G (\\\\\)
Temperatura	/ / IT-t-M-006 / / / / I
(≥ 0 ºC)	Método interno ossado en:
	SM 2550 B (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

III. Toma de muestra

ENSAYO	(0)		NORN	IA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo		\	(V)		
Toma de muestra puntual para los ensayos	físico-químic	os incluidos en	el IT-I-TM	1-003	1
presente anexo técnico			Métod	o interno basado en:	
\bigvee	(0)		ISO 56	67 - 5	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas residuales		
Toma de muestra puntual para los ensayos físico-químicos incluidos en el	IT-I-TM-004	1
presente anexo técnico	Método interno basado en:	
	ISO 5667 - 10	
Toma de muestra compuesta en función del tiempo y en función del caudal	IT-I-TM-012	I
para los ensavos físico-químicos incluidos en el presente anexo técnico	Método interno basado en:	
	ISO 5667-10	

Un método interno se considera que está basado en métodos normalizados cuando su validez y su adecuación al uso se han demostrado por referencia a dicho método normalizado y en ningún caso implica que ENAC considere que ambos métodos sean equivalentes. Para más información recomendamos consultar el Anexo I al CGA-ENAC-LEC.

Emplazamientos desde los que se llevan a cabo actividades in situ:

Travesía de Iván de Vargas 3; 28019 Madrid
--