

EUROFINS MUNUERA, S.L. (Unipersonal)

Dirección: C/ Julián Romea, Parcela 22 - 1B; 30169 San Ginés (Murcia)

Norma de referencia: UNE-EN ISO/IEC 17025:2017

Actividad: Ensayos

Acreditación nº: 268/LE551

Fecha de entrada en vigor: 23/03/2001

ALCANCE DE LA ACREDITACIÓN

(Rev. 54 fecha 12/09/2025)

Instalaciones donde se llevan a cabo las actividades cubiertas por esta acreditación

	Código	
C/ Julián Romea, Parcela 22 - 1B; 30169 San Ginés (Murcia)	Α	
Actividades in situ	I	

Ensayos en el sector medioambiental

<u>Índice</u>

PROGRAMA DE ACREDITACIÓN: "Control de la calidad del agua de piscina" (NT-70.04)*	2
MUESTRAS LÍQUIDAS	3
I. Análisis físico-químicos	3
Aguas de consumo y aguas envasadas	3
Aguas continentales	10
Aguas residuales	17
Aguas marinas	21
II. Análisis microbiológicos	25
Aguas de consumo y aguas envasadas	25
Aguas de consumo y aguas continentales tratadas	25
Aguas continentales	25
Aguas continentales tratadas	26
Aguas residuales	26
Aguas residuales depuradas y regeneradas	26
Aguas marinas	26
III. Análisis de <i>Legionella</i>	27
Aguas de consumo, aguas continentales y aguas residuales	27
IV. Análisis organolépticos	27
Aguas de consumo	27
V. Análisis parasitológicos	28
Aguas continentales, aguas residuales depuradas y regeneradas	28
VI. Análisis físico-químicos <i>in situ</i>	28
Aguas de consumo	28
Aguas continentales	28
Aguas continentales tratadas	29
Aguas residuales	29
Aguas marinas	29

ENAC es firmante de los Acuerdos de Reconocimiento Mutuo establecidos en el seno de la European co-operation for Accreditation (EA) y de las organizaciones internacionales de organismos de acreditación, ILAC e IAF (www.enac.es)

Código Validación Electrónica: H7017h8n98550V3G1r

La acreditación mantiene su vigencia hasta notificación en contra. La presente acreditación está sujeta a modificaciones, suspensiones temporales y retirada. Su vigencia puede confirmarse en https://www.enac.es/web/enac/validacion-electronica o haciendo clic aquí

VII. Toma de muestra	30
Aguas de consumo	30
Aguas continentales superficiales	30
Aguas continentales subterráneas	30
Aguas residuales	31
Aguas regeneradas, reutilizadas y vertidos salinos e hipersalinos	31
Aguas de transición y costeras	31
Aguas marinas	31
VIII. Toma de muestra <i>Legionella</i>	31
Aguas de consumo y aguas continentales	31
MUESTRAS SÓLIDAS	32
I. Análisis físico-químicos	32
Lodos	
Sedimentos	
Residuo Sólido	
II. Análisis Microbiológicos	33
Lodos	33
Sedimentos	34
Placas de contacto	34
III. Análisis biológicos	35
Praderas de Fanerógamas marinas (Posidonia oceánica, Cymodocea nodosa, Zostera noltii, Zostera oceánica	
Comunidades bentónicas sésiles (Gorgonias, Pinna sp., Caulerpa sp., Lithophaga lithophaga,)	
Macroalgas en aguas litorales	35
IV. Análisis biológicos in situ	36
Praderas de Fanerógamas marinas (Posidonia oceánica, Cymodocea nodosa, Zostera noltii, Zostera oceánica).36
V. Toma de muestra	36
Lodos	36
Sedimentos	
Praderas de Fanerógamas marinas (Posidonia oceanica, Cymodocea nodosa, Zostera sp., Sebadales)	37

PROGRAMA DE ACREDITACIÓN: "Control de la calidad del agua de piscina" (NT-70.04)*

Ensayos para informar sobre la calidad del agua de piscina:

- pH.
- Temperatura "in situ".
- Turbidez.
- Cloro libre residual "in situ".
- Cloro combinado residual "in situ".
- Recuento de Escherichia coli.
- Recuento de Pseudomonas aeruginosa.
- Detección y recuento Legionella spp.

*Disponible en la página web de ENAC

MUESTRAS LÍQUIDAS

I. Análisis físico-químicos

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y aguas envasadas		1
рН	PE/MUNLAB/06 14	Α
(1 - 12 uds. de pH)	Método interno basado en:	
(SM 4500 - H ⁺ B	
Conductividad	PE/MUNLAB/06 15	Α
(10 - 10000 μS/cm)	Método interno basado en:	
	SM 2510 B	
Turbidez	PE/MUNLAB/06 16	Α
(0,2 - 50 UNF)	Método interno basado en:	
	UNE-EN ISO 7027-1	
Color por método visual	PE/MUNLAB/06 31	Α
(≥ 5 mg Pt-Co/I)	Método interno basado en:	
	UNE-EN ISO 7887	
Dureza por titulación volumétrica	PE/MUNLAB/06 08	Α
(≥ 5 mgCaCO ₃ /I)	Método interno basado en:	
	UNE-ISO 6059	
Oxidabilidad por titulación volumétrica	PE/MUNLAB/06 12	Α
(≥ 1 mg/l)	Método interno basado en:	
	UNE-EN ISO 8467	
Carbonatos, Bicarbonatos y Alcalinidad por titulación potenciométrica	PE/MUNLAB/06 17	Α
Alcalinidad (≥ 5 mg/l)	Método interno basado en:	
Bicarbonatos (≥ 5 mg/l)	UNE-EN ISO 9963-1	
Carbonatos $(\geq 5 mg/l)$		
Aluminio disuelto por espectrofotometría UV-VIS	PE/MUNLAB/06 479	Α
(≥ 20 μg/l)	Método interno basado	
	en:SM 3500 - Al B	
Amonio por espectrofotometría UV-VIS	PE/MUNLAB/06 05	Α
(≥ 0,05 mg/l)	Método interno basado en:	
	SM 4500 - NH ₃ F	
Amonio por espectrofotometría UV-VIS	PE/MUNLAB/06 560	Α
(≥ 0,02 mg/l)	Método interno basado en:	
	SM 4500 - NH ₃ F	
Cianuros totales por espectrofotometría UV-VIS	PE/MUNLAB/06 568	Α
(≥ 15 μg/l)	Método interno basado en:	
	ISO 6703-1	
Color por espectrofotometría UV-VIS	PE/MUNLAB/06 31	Α
(≥ 5 mg Pt-Co/I)	Método interno basado en:	
	UNE-EN ISO 7887	
Cromo VI por espectrofotometría UV-VIS	PE/MUNLAB/06 139	Α
(≥ 0,005 mg/l)	Método interno basado en:	
	SM 3500 – Cr B	
Fenoles totales por espectrofotometría UV-VIS	PE/MUNLAB/06 570	Α
(≥ 0,1 μg/l)	Método interno basado en:	
	UNE-ISO 6439	
Fosfatos por espectrofotometría UV-VIS	PE/MUNLAB/06 377	Α
	Método interno basado en:	
	SM 4500 – P E	

	ENSAYO)		NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo	y aguas envasadas				•
Nitratos por espectr (≥ 1 mg/l)	rofotometría UV-VIS			PE/MUNLAB/06 459 Método interno basado en: DIN 38405-9	А
Nitritos por espectro (≥ 0,01 mg/l)	ofotometría UV-VIS			PE/MUNLAB/06 06 Método interno basado en: SM 4500 - NO ₂ B	А
Nitritos por espectro (≥ 0,05 mg/l)	ofotometría UV-VIS			PE/MUNLAB/06 561 Método interno basado en: SM 4500 – NO ₂ B	А
Sílice por espectrofo (≥ 1 mg SiO ₂ /I)	otometría UV-VIS			PE/MUNLAB/06 201 Método interno basado en: UNE 77051	А
Sulfitos por espectro (≥ 0,2 mg/l)	ofotometría UV-VIS			PE/MUNLAB/06 881 Método interno basado en: Kit comercial	А
Sulfuros por espectr (≥ 0,1mg/l)	rofotometría UV-VIS			PE/MUNLAB/06 883 Método interno basado en: SM 4500-S ²	А
Tensioactivos anión (≥ 0,1mg LAS/I)	icos por espectrofoton	netría UV-VIS		PE/MUNLAB/06 378 Método interno basado en: EPA 425.1	А
Cianuros totales por (≥ 15 μg/l)	FIAS y espectrofotome	tría UV-VIS		PE/MUNLAB/06 800 Método interno basado en: UNE-EN ISO 14403-2	А
Nitritos por FIAS y e (≥ 0,02 mg/l)	Nitritos por FIAS y espectrofotometría UV-VIS PE/MUNLAB/06 738				А
Carbono Orgánico T (≥ 1 mg/l)	Carbono Orgánico Total (COT) y disuelto (COD) por espectroscopía de IR PE/MUNLAB/06 83				А
Mercurio disuelto p (≥ 0,3 μg/l)	or generación de vapo	r frío y fluorescen	cia atómica	PE/MUNLAB/06 429 Método interno basado en: UNE-EN ISO 12846	А
Boro y boro disuelto (ICP/OES) (≥ 0,1 mg/l)	por espectroscopia de	plasma de acopla	amiento inductivo	IT/MUNLAB/06 25 76 Método interno basado en: UNE-EN ISO 11885	А
Metales, metales dis acoplamiento induc	sueltos y metales totalo tivo (ICP/MS)	es por espectrosco	opia de plasma de	PE/MUNLAB/06 843 Método interno basado en:	Α
Aluminio Antimonio Arsénico	(≥ 20 μg/l) (≥ 1 μg/l) (≥ 1 μg/l)	Magnesio Manganeso Molibdeno	(≥ 0,5 mg/l) (≥ 1 μg/l) (≥ 1 μg/l)	EPA 6020 B (SW-846)	
Bario Berilio Cadmio	(≥ 10 μg/l) (≥ 5 μg/l) (≥ 0,01 μg/l)	Níquel Plomo Potasio	(≥ 1 μg/l) (≥ 0,36 μg/l) (≥ 0,5 mg/l)		
Calcio Cobalto	(≥ 0,5 mg/l) (≥ 1 μg/l)	Selenio Sodio	(≥ 0,3 μg/l) (≥ 0,5 mg/l)		
Cobre Cromo Estaño	(≥ 1 µg/l) (≥ 1 µg/l) (≥ 1 µg/l)	Talio Titanio Uranio	(≥ 1 μg/l) (≥ 1 μg/l) (≥ 1 μg/l)		
Estroncio Hierro	(≥ 0,1 mg/l) (≥ 20 μg/l)	Vanadio Zinc	(≥ 1 μg/l) (≥ 5 μg/l)		

	ENSAY	0		NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y agu	as envasadas				•
Mercurio y Mercurio disu	elto por espectr	oscopía de pla	sma de acoplamiento	PE/MUNLAB/06 931	Α
inducido (ICP/MS)			·	Método interno basado en:	
(≥ 0,1 μg/l)				EPA 6020 B (SW 846)	
Aniones por cromatograf	ía iónica			PE/MUNLAB/06 120	Α
Bromuros	(≥ 0,5mg/l)	Nitratos	(≥ 1 mg/l)	Método interno basado en:	
Cloruros	(≥ 1 mg/l)	Sulfatos	(≥ 5 mg/l)	UNE-EN ISO 10304-1	
Fluoruros	(≥ 0,1 mg/l)		, 5, ,		
Aniones por cromatograf				PE/MUNLAB/06 813	Α
Cloratos (≥ 0,05 mg				Método interno basado en	
Cloritos (≥ 0,05 mg				UNE-EN ISO 10304-4	
Bromatos por cromatogra				PE/MUNLAB/06 203	Α
(≥ 3 μg/l)				Método interno basado en:	
(= 0 p.g/./				EPA 317.0	
Cationes por cromatograf	fía iónica			PE/MUNLAB/06 120	Α
Calcio	(≥ 1 mg/l)	Potasio	(≥ 1 mg/l)	Método interno basado en:	
Magnesio	(≥ 1 mg/l)	Sodio	(≥ 1 mg/l)	UNE-EN ISO 14911	
Compuestos Orgánicos		(COV) por	cromatografía de	 	Α
gases/espectrometría de			5. 5 6 . 5	Método interno basado en:	
1,1,1-tricloroetano				UNE-EN ISO 10301	
1,1,2-tricloroetano					
1,1-dicloroetano					
1,2,3-triclorobenceno					
1,2,4-triclorobenceno					
1,2-diclorobenceno					
1,3-diclorobenceno					
1,4-diclorobenceno					
Bromodiclorometano					
Bromoformo					
Clorobenceno					
Cloroformo					
Dibromoclorometano					
Diclorometano					
Etilbenceno					
m y p-xileno					
o-xileno					
Tetracloruro de carbono					
Tolueno					
Xileno (Suma mínima de:	pym xileno y o	-xileno)			
	(≥ 5 <i>µ</i>	ıg/I)			
Tetracloroeteno					
Tricloroeteno					
	(≥ 2 <i>µ</i>	ıg/I)			
Benceno	,	-			
	(≥ 0.3	μg/I)			
1,2 Dicloroetano	, -/-	. 5			
,	(≥ 0.5	μg/I)			
Suma de tetracloroeteno		r-3/-/			
Suma de Trihalometanos	-				

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y aguas envasadas		
Clorobencenos por cromatografía de gases/espectrometría de masas (CG/MS) Pentaclorobenceno Hexaclorobenceno	PE/MUNLAB/06 663 Método interno basado en: EPA 505	А
(≥ 0,01 μg/l) Hidrocarburos Aromáticos Policíclicos (HAPs) por cromatografía de gases/espectrometría de masas (CG/MS) Benzo-a-pireno	PE/MUNLAB/06 663 Método interno basado en: EPA 505	A
(≥ 0,003 μg/l) Antraceno Fluoranteno Benzo-b-fluoranteno Benzo-k-fluoranteno Benzo-ghi-perileno Indeno 1,2,3 cd pireno Criseno Dibenzo (a, h) antraceno		
(≥ 0,01 μg/l) Suma de Hidrocarburos Aromáticos Policiclicos (HAP's) por cálculo	PE/MUNLAB/06 729	А

ENSAYO		NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y aguas envasadas			
Plaguicidas por cromatografía de gases/esp	ectrometría de masas (CG/MS)	PE/MUNLAB/06 663	Α
Aldrin		Método interno basado en:	
Dieldrin		EPA 505	
Heptacloro			
Heptacloro epóxido A y B			
(≥ 0,005 μg/l)			
2,4-DDE (o, p´ DDE)	Etoprofos		
2,4-DDT (o, p´ DDT)	Fenamifos		
4,4 DDD (p, p´ DDD)	Fenclorfos		
4,4 DDE (p, p´ DDE)	Fenitrotión		
4,4 DDT (p, p´ DDT)	Fentión		
Aclonifeno	Fipronil		
Alacloro	Fosalona		
Alfa HCH	Imazalil		
Azinfos etil	Irgarol 1051 (Cibutrina)		
Azoxistrobina	Isodrin		
Benalaxil	lambda-cihalotrina		
Benfluralina	Lindano (gamma-HCH)		
Beta HCH	Malatión		
Bifenox	Metil paratión		
Ciproconazol	Metolacloro		
Ciprodinil	Metoxicloro		
cis-Clordano	Miclobutanil		
Clodinafop propagil	Oxifluorfen		
Clorfenvinfos	Pendimetalina		
Clorpirifós	Permetrina		
Clorpirifos-metil	Pirifenox		
Clorprofam	Pirimetanil		
Clortal dimetil	Pirimifos-metil		
delta-HCH	Piriproxifeno		
Deltametrina	Profenofos		
Diazinón	Propiconazol		
Dicofol	Propizamida		
Dimetomorf	Quinoxifeno		
Endosulfan I	Tebuconazol		
Endosulfan II	Tetraclorvinfos		
Endosulfan sulfato	Tetraconazol		
Endrin	trans-Clordano		
Endrin cetona	Triadimefon		
epsilon-HCH	Triazofos		
Etil paratión	Trichloronat		
Etión	Trifluralina		
(≥ 0,01 μg/l)			
Suma de Plaguicidas por cálculo		PE/MUNLAB/06 628	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y aguas envasadas		
Triazinas por cromatografía de gases/espectrometría de masas (CG/MS) Ametrina Atrazina Prometrina Terbutilazina Terbutrina Trietazina	PE/MUNLAB/06 663 Método interno basado en: EPA 505	A
(≥ 0,01 µg/l)		
Cloruro de vinilo por cromatografía de gases/espectrometría de masas (CG/MS) $(\ge 0.15 \mu g/I)$	PE/MUNLAB/06 115 Método interno basado en: UNE-EN ISO 10301	A
Ácidos Haloacéticos por cromatografía líquida/espectrometría de masas (UHPLC-MS/MS) Ácido monocloroacético (MCAA) Ácido dicloroacético (DCAA) Ácido bromocloroacético (BCAA) Ácido monobromoacético (MBAA) Ácido dibromoacético (DBAA) Ácido tricloroacético (TCAA) Ácido bromodicloroacético (BDCAA) Ácido clorodibromoacético (CDBAA) Ácido tribromoacético (TBAA) $(≥ 5 μg/l)$ Suma de ácidos Haloacéticos	PE/MUNLAB/06 838 Método interno basado en: EPA 557	A
Acrilamida por cromatografía líquida/espectrometría de masas (UHPLC-MS/MS $(\ge 0.03 \mu g/)$	PE/MUNLAB/06 708 Método interno basado en: EPA 538	А
Bisfenol A por cromatografía líquida/espectrometría de masas (UHPLC-MS/MS) $(\geq 0.75 \ \mu g/l)$	PE/MUNLAB/06 908 Método interno basado en: EPA 543	А
Microcistinas por cromatografía líquida/espectrometría de masas (UHPLC-MS/MS)	PE/MUNLAB/06 904 Método interno basado en: ISO 22104	А
Microcistina LA Microcistina LR Microcistina RR Microcistina YR		
(≥ 0,2 μg/l)		
Suma de microcistinas		

ENSA	AYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y aguas envasadas			
Plaguicidas por cromatografía líquida/e	spectrometría de masas (UHPLC-	PE/MUNLAB/06 877	Α
MS/MS)		Método interno basado en	
2,4-D	Imidacloprid	EPA 538	
Aldicarb	Isoproturon		
Ametrina	Linuron		
Atrazina	MCPA		
Atrazina-desetil	Metalaxil		
Atrazina-desisopropil	Metamidofos		
Azinfos-etil	Metamitrona		
Azinfos-metil	Metidation		
Azitromicina	Metomilo		
Bentazona	Metribuzina		
Bromacil	Metsulfuron-metil		
Buprofezina	Mevinfos		
Cadusafos	Ometoato		
Carbaril	Oxadiazon		
Carbendazima	Oxamilo		
Carbofurano	Pirimicarb		
Cianazina	Prometrina		
Clorsulfuron	Propazina		
Clortoluron	Quizalofop-etil		
Clotianidina	Simazina		
Cumafos	Simetrina		
Demeton	Sulprofos		
Diclofenaco	Terbumeton-desetil		
Diclorvos	Terbutilazina		
Diflufenican	Terbutilazina-desetil		
Dimetenamida	Terbutrina		
Dimetoato	Tiabendazol		
Disulfoton	Tiacloprid		
Diuron	Tribenuron-metil		
Fensulfotion	Trietazina		
Flazasulfuron			
Forato			
(≥ 0,03 µ	g/I)		
Suma de Plaguicidas por cálculo		PE/MUNLAB/06 628	
Amonio no ionizado por cálculo		PE/MUNLAB/06 05	Α
(≥ 0,025 mg/l)		Método interno basado en:	
		SM 4500 – NH ₃ F	
Cromo III por cálculo		PE/MUNLAB/06 861	Α
(≥ 0,005 mg/l)		Método interno basado en:	
		SM 3500-Cr B	
Dureza total por cálculo		PE/MUNLAB/06 309	Α
(≥ 6,7 mg CaCO₃/I)		Método interno basado en:	
· · · · · · · · · · · · · · · · · · ·		SM 2340 B	
Índice de Langelier por cálculo		PE/MUNLAB/06 248	Α
O P		Método interno basado en:	
		SM 2330 B	1

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y aguas envasadas		
Índice de Langelier por cálculo	Resolución de 27 de junio	Α
	de 2008. Programa de	
	vigilancia sanitaria del agua	
	de consumo humano de la	
	Comunidad Autónoma de	
	Canarias	
Índice de Langelier- Saturación por cálculo	PE/MUNLAB/06 827	Α
	Método interno basado en:	
	SM 2330 B	
Índice Larson por cálculo	PE/MUNLAB/06 930	Α
	Método interno basado en:	
	"Laboratory Studies	
	Relating Mineral Quality of	
	water to corrosion of Steel	
	ans Cast Iron. (Larson T.E.	
	et al. Circular 71. 1958	
Índice de Ryznar por cálculo	PE/MUNLAB/06 860	Α
	Método interno basado en:	
	SM 2330 B	
Índice SAR por cálculo	PE/MUNLAB/06 530	Α
	Método interno basado en:	
	"A short Note on	
	Calculating the Adjusted	
	SAR Index" Suarez D.L. et	
	al. ASABE 52:493-496 2009	
Salinidad total por cálculo	PE/MUNLAB/06 247	Α
(≥ 13,65 mg/l)	Método interno basado en:	
	J. Rodier	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
рН	PE/MUNLAB/06 14	Α
(1 - 12 uds. de pH)	Método interno basado en:	
	SM 4500 - H ⁺ B	
Conductividad	PE/MUNLAB/06 15	Α
(10 - 50000 μS/cm)	Método interno basado en:	
	SM 2510 B	
Turbidez	PE/MUNLAB/06 16	Α
(0,4 - 400 UNF)	Método interno basado en:	
	UNE-EN ISO 7027-1	
Sólidos en suspensión	PE/MUNLAB/06 20	Α
(≥ 2 mg/l)	Método interno basado en:	
	UNE-EN 872	
Sólidos sedimentables	PE/MUNLAB/06 21	Α
(≥ 0,1 ml/l)	Método interno basado en:	
	SM 2540 F	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
Dureza por titulación volumétrica (≥ 5 mgCaCO₃/I)	PE/MUNLAB/06 08 Método interno basado en: UNE-ISO 6059	А
Nitrógeno Kjedahl por titulación volumétrica (≥ 2 mg/l)	PE/MUNLAB/06 26 Método interno basado en: UNE-EN 25663	А
Oxidabilidad por titulación volumétrica $(\ge 1 \text{ mg } O_2/I)$	PE/MUNLAB/06 12 Método interno basado en: UNE-EN ISO 8467	А
Carbonatos, Bicarbonatos y Alcalinidad por titulación potenciométrica Alcalinidad $(\geq 5 mg/l)$ Bicarbonatos $(\geq 5 mg/l)$ Carbonatos $(\geq 5 mg/l)$	PE/MUNLAB/06 17 Método interno basado en: UNE-EN ISO 9963-1	A
Demanda Bioquímica de Oxígeno (DBO $_5$) por método manométrico ($\geq 10 \ mgO_2/I$)	PE/MUNLAB/06 23 Método interno basado en: SM 5210 D	А
Demanda Bioquímica de Oxígeno (DBO₅) por electrometría (≥ 3 mg O₂/I)	PE/MUNLAB/06 563 Método interno basado en: UNE-EN 1899-2	A
Amonio por espectrofotometría UV-VIS (≥ 0,05 mg/l)	PE/MUNLAB/06 05 Método interno basado en: SM 4500 - NH ₃ F	A
Amonio por espectrofotometría UV-VIS (≥ 0,02 mg/l)	PE/MUNLAB/06 560 Método interno basado en: SM 4500 - NH ₃ F	A
Amonio por espectrofotometría UV-VIS (≥ 0,025 mg/l)	PE/MUNLAB/06 624 Método interno basado en: SM 4500 - NH ₃ F	А
Boro disuelto por espectrofotometría UV-VIS (≥ 0,5 mg/I)	PE/MUNLAB/06 09 Método interno basado en: ISO 9390	A
Cianuros libres por espectrofotometría UV-VIS (≥ 0,02 mg/l)	PE/MUNLAB/06 342 Método interno basado en: SM 4500 –CN ⁻ y E	А
Cianuros totales por espectrofotometría UV-VIS (≥ 15 mg/l)	PE/MUNLAB/06 568 Método interno basado en: ISO 6703-1	А
Color por espectrofotometría UV-VIS (≥ 5 mg Pt-Co/I)	PE/MUNLAB/06 31 Método interno basado en: UNE-EN ISO 7887	А
Cromo VI por espectrofotometría UV-VIS (≥ 0,005 mg/I)	PE/MUNLAB/06 139 Método interno basado en: SM 3500 – Cr B	А
Demanda Química de Oxígeno (DQO) por espectrofotometría UV-VIS (≥ 10 mg/l)	PE/MUNLAB/06 18 Método interno basado en: SM 5220 D	А
Fenoles totales por espectrofotometría UV-VIS (≥ 0,1 mg/l)	PE/MUNLAB/06 570 Método interno basado en: UNE-ISO 6439	А

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
Fosfatos por espectrofotometría UV-VIS (≥ 0,2 mg/I)	PE/MUNLAB/06 377 Método interno basado en: SM 4500 – P E	А
Fósforo total por espectrofotometría UV-VIS (≥ 0,05mg/I)	PE/MUNLAB/06 377 Método interno basado en: SM 4500 – P E	Α
Nitratos por espectrometría UV-VIS (≥ 1 mg/l)	PE/MUNLAB/06 459 Método interno basado en: DIN 38405-9	А
Nitritos por espectrofotometría UV-VIS (≥ 0,05 mg/l)	PE/MUNLAB/06 561 Método interno basado en: SM 4500 - NO ₂ B	A
Nitritos por espectrofotometría UV-VIS (≥ 0,01 mg/l)	PE/MUNLAB/06 06 Método interno basado en: SM 4500 - NO_2^- B	A
Nitrógeno total por espectrofotometría UV-VIS (≥ 1 mg/I)	PE/MUNLAB/06 269 Método interno basado en: SM 4500 - N C	A
Sílice por espectrofotometría UV-VIS (≥ 0,11 mg /I)	PE/MUNLAB/06 864 Método interno basado en: SM 4500-SiO ₂ C	A
Sulfitos por espectrofotometría UV-VIS (≥ 0,2 mg/l)	PE/MUNLAB/06 881 Método interno basado en: Kit comercial	A
Sulfuros por espectrofotometría UV-VIS $(\geq 0.1 \ mg/l)$	PE/MUNLAB/06 883 Método interno basado en: SM 4500-S ²	A
Tensioactivos aniónicos por espectrofotometría UV-VIS (≥ 0,1 mg LAS/I)	PE/MUNLAB/06 378 Método interno basado en: EPA 425.1	А
Cianuros totales por FIAS y espectrofotometría UV-VIS (≥ 0,02 mg/I)	PE/MUNLAB/06 800 Método interno basado en: UNE-EN ISO 14403 – 2	А
Nitritos por FIAS y espectrofotometría UV-VIS (≥ 0,02 mg/l)	PE/MUNLAB/06 738 Método interno basado en: UNE-EN ISO 13395	А
Carbono Orgánico no Purgable (NPOC), disuelto, y Carbono Orgánico Total (TOC) por espectroscopía IR $(\geq 1 \ mg/l)$	PE/MUNLAB/06 83 Método interno basado en: UNE-EN 1484	А
Mercurio disuelto y total por generación de vapor frío y fluorescencia atómica (≥ 0,0005 mg/l)	PE/MUNLAB/06 429 Método interno basado en: UNE-EN ISO 12846	А
Mercurio y mercurio disuelto por generación de vapor frío y fluorescencia atómica $(\ge 0.02 \ \mu g/I)$	PE/MUNLAB/06 454 Método interno basado en UNE-EN ISO 17852	А
Boro y boro disuelto por espectroscopia de plasma de acoplamiento inductivo (ICP/OES) $(\ge 0.1 \text{ mg/l})$	IT/MUNLAB/06 25 76 Método interno basado en: UNE-EN ISO 11885	А

	EN	SAYO		NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales					
Metales totales por e	espectroscopia d	e plasma de acoplan	niento inductivo	IT/MUNLAB/06 25 76	Α
ICP/OES)				Método interno basado en:	
Aluminio	(≥ 0,5 mg/l)	Hierro	(≥ 0,5 mg/l)	EPA 6010 D (SW-846)	
Arsénico	(≥ 0,5 mg/l)	Manganeso	(≥ 0,1 mg/l)		
Bario	(≥ 0,5 mg/l)	Níquel	(≥ 0,1 mg/l)		
Cadmio	(≥ 0,1 mg/l)	Plomo	(≥ 0,5 mg/l)		
Cobre	(≥ 0,1 mg/l)	Selenio	(≥ 0,5 mg/l)		
Cromo	(≥ 0,5 mg/l)	Vanadio	(≥ 0,1 mg/l)		
Estroncio	(≥ 0,5 mg/l)	Zinc	(≥ 0,5 mg/l)		
Metales y metales di	sueltos por espe	ectroscopia de plasm	na de acoplamiento	PE/MUNLAB/06 843	Α
inductivo (ICP/MS)				Método interno basado en:	
Aluminio	(≥ 20 μg/l)	Magnesio	(≥ 0,5 mg/l)	EPA 6020 B (SW-846)	
Antimonio	(≥ 1 μg/l)	Manganeso	(≥ 1 μg/l)		
Arsénico	(≥ 1 μg/l)	Molibdeno	(≥ 1 μg/l)		
Bario	(≥ 10 μg/l)	Níquel	(≥ 1 μg/l)		
Berilio	(≥ 5 μg/l)	Plomo	(≥ 0,36 μg/l)		
Cadmio	(≥ 0,01 μg/l)	Potasio	(≥ 0,5 mg/l)		
Calcio	(≥ 0,5 mg/l)	Selenio	(≥ 0,3 μg/l)		
Cobalto	(≥ 1 μg/l)	Sodio	(≥ 0,5 mg/l)		
Cobre	(≥ 1 μg/l)	Talio	(≥ 1 μg/l)		
Cromo	(≥ 1 μg/l)	Titanio	(≥ 1 μg/l)		
Estaño	(≥ 1 μg/l)	Uranio	(≥ 1 μg/l)		
Estroncio	(≥ 0,1 mg/l)	Vanadio	(≥ 1 μg/l)		
Hierro	(≥ 20 μg/l)	Zinc	(≥ 5 μg/l)		
Mercurio y Mercurio	disuelto por esp	ectroscopía de plasr	na de acoplamiento	PE/MUNLAB/06 931	Α
inducido (ICP/MS)				Método interno basado en:	
(≥ 0,1 μg/l)				EPA 6020 B (SW 846)	
Aniones por cromato	grafía iónica			PE/MUNLAB/06 120	Α
Bromuros	(≥ 0,5mg/l)	Nitratos	(≥ 1 mg/l)	Método interno basado en:	
Cloruros	(≥ 1 mg/l)	Sulfatos	(≥ 5 mg/l)	UNE-EN ISO 10304-1	
Fluoruros	(≥ 0,1 mg/l)				
Aniones por cromato	grafía iónica			PE/MUNLAB/06 813	Α
Cloratos	(≥ 0,05 mg/l)			Método interno basado en:	
Cloritos	(≥ 0,05 mg/l)			UNE-EN ISO 10304-1	
Bromatos por croma				PE/MUNLAB/06 203	Α
(≥ 3 μg/l)	-			Método interno basado en:	
				EPA 317.0	
Cationes por cromato	ografía iónica			PE/MUNLAB/06 120	Α
Calcio	(≥ 1 mg/l)	Potasio	(≥ 1 mg/l)	Método interno basado en:	
Magnesio	(≥ 1 mg/l)	Sodio	(≥ 1 mg/l)	UNE-EN ISO 14911	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
Compuestos Orgánicos Volátiles (COV) por cromatografía de gases/espectrometría de masas (GC/MS) 1,1,1-tricloroetano 1,1,2-tricloroetano 1,2 Dicloroetano 1,2 dicloropropano 1,2,3-triclorobenceno 1,2-diclorobenceno 1,3-diclorobenceno 1,3-diclorobenceno Bromodiclorometano Bromoformo Clorobenceno Dibromoclorometano Diclorobenceno (suma isómeros o-m-p) Diclorometano Etilbenceno m y p-xileno o-xileno Tolueno	PE/MUNLAB/06 47 Método interno basado en: UNE-EN ISO 10301	A
Trans 1,3-dicloropropeno Xileno (suma isómeros o-m-p)		
(≥ 5 μg/l)		
Tetracloroeteno Tetracloruro de carbono Tricloroeteno $(\geq 2 \mu g/l)$		
Benceno Cloroformo (Triclorometano) (≥ 0,5 μg/l) Suma de Trihalometanos Suma de tetracloroeteno y tricloroeteno		
Hidrocarburos aromáticos policíclicos (HAP) por cromatografía de gases/espectrometría de masas (CG/MS) Benzo(b)fluoranteno Benzo(k)Fluroanteno Indeno(1,2,3-cd)pireno (≥ 0,005 μg/l) Antraceno	PE/MUNLAB/06 663 Método interno basado en: EPA 505	A
(≥ 0,01 µg/l)	PE/MUNLAB/06 729	
Suma de Hidrocarburos Policiclicos Aromáticos (PAHs)	I L/WIONLAD/00 /23	

	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO	
Aguas continentales			
Plaguicidas por cromatografía de Aclonifeno Alacloro	PE/MUNLAB/06 663 Método interno basado en: EPA 505	А	
Clorpirifos (clorpirifos-etil) 2,4 DDT (o,p'-DDT) 4,4 DDD (p,p'-DDD)	≥ 0,01 μg/l) 4,4 DDE (p,p'-DDE) Trifluralina ≥ 0,005 μg/l)		
4,4 DDT (p-p'-DDT)	Quinoxifeno		
Suma de plaguicidas por cálculo	2 0,002 μg/l)	PE/MUNLAB/06 628	
Atrazina Simazina Terbutilazina Terbutrina	ses/espectrometría de masas (CG/MS) $(\geq 0,01 \ \mu g/l)$ $(\geq 0,05 \ \mu g/l)$ $(\geq 0,01 \ \mu g/l)$ $(\geq 0,001 \ \mu g/l)$	PE/MUNLAB/06 663 Método interno basado en: EPA 505	A
Acrilamida por cromatografía li MS/MS) $(\geq 0.03 \mu g/)$	PE/MUNLAB/06 708 Método interno basado en: EPA 538	А	
Bisfenol A por cromatografía I MS/MS) $(\geq 0.75 \mu g/I)$	PE/MUNLAB/06 908 Método interno basado en: EPA 543	A	
Ácidos Haloacéticos por croma (UHPLC-MS/MS) Ácido monocloroacético (MCAA) Ácido dicloroacético (DCAA) Ácido bromocloroacético (BCAA) Ácido monobromoacético (MBAA) Ácido dibromoacético (DBAA) Ácido tricloroacético (TCAA) Ácido bromodicloroacético (BDCA) Ácido clorodibromoacético (CDBAA) Ácido tribromoacético (TBAA)	AA) AA) (≥ 5 μg/l)	PE/MUNLAB/06 838 Método interno basado en: EPA 557	A
Microcistinas por cromatografía MS/MS) Microcistina LA Microcistina LR Microcistina RR Microcistina YR Suma de microcistinas	líquida/espectrometría de masas (UHPLC- (≥ 0,2 μg/l)	PE/MUNLAB/06 904 Método interno basado en: ISO 22104	A

ENSAYO		NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales			•
Plaguicidas por cromatografía líquida/espe	ctrometría de masas (UHPLC-	PE/MUNLAB/06 877	Α
MS/MS)	·	Método interno basado en	
2,4-D	Forato	EPA 538	
Aldicarb	Imidacloprid		
Ametrina	Isoproturon		
Atrazina	Linuron		
Atrazina-desetil	MCPA		
Atrazina-desisopropil	Metalaxil		
Azinfos-etil	Metamidofos		
Azinfos-metil	Metamitrona		
Azitromicina	Metidation		
Bentazona	Metomilo		
Bromacil	Metribuzina		
Buprofezina	Metsulfuron-metil		
Cadusafos	Mevinfos		
Carbaril	Ometoato		
Carbendazima	Oxadiazon		
Carbofurano	Oxamilo		
Cianazina	Pirimicarb		
Clorsulfuron	Prometrina		
Clortoluron	Propazina		
Clotianidina	Quizalofop-etil		
Cumafos	Simazina		
Demeton	Simetrina		
Diclofenaco	Sulprofos		
Diclorvos	Terbumeton-desetil		
Diflufenican	Terbutilazina		
Dimetenamida	Terbutilazina-desetil		
Dimetoato	Terbutrina		
Disulfoton	Tiabendazol		
Diuron	Tiacloprid		
Fensulfotion	Tribenuron-metil		
Flazasulfuron	Trietazina		
Fonofos			
(≥ 0,03 μg/l)			
Suma de Plaguicidas por cálculo		PE/MUNLAB/06 628	
Amonio no ionizado por cálculo		PE/MUNLAB/06 05	Α
(≥ 0,025 mg/l)		Método interno basado en:	
. , , , , , , , , , , , , , , , , , , ,		SM 4500 - NH ₃ F	
Cromo III por cálculo		PE/MUNLAB/06 861	А
(≥ 0,005 mg/l)		Método interno basado en:	
		SM 3500-Cr B	
Dureza total por cálculo		PE/MUNLAB/06 309	Α
(≥ 6,7 mg CaCO ₃ /I)		Método interno basado en:	'`
(-, · · · · · · · · · · · · · · · · · ·		SM 2340 B	
Índice de Langelier-Saturación por cálculo		PE/MUNLAB/06 827	Α
maise de Langener Saturación por Calculo		Método interno basado en:	
		SM 2330 B	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
Índice de Langelier por cálculo	Resolución de 27 de junio	Α
	de 2008. Programa de	
	vigilancia sanitaria del agua	
	de consumo humano de la	
	Comunidad Autónoma de	
	Canarias	
Índice Larson por cálculo	PE/MUNLAB/06 930	Α
	Método interno basado en:	
	"Laboratory Studies	
	Relating Mineral Quality of	
	water to corrosion of Steel	
	ans Cast Iron. (Larson T.E. et	
	al. Circular 71. 1958	
Índice SAR por cálculo	PE/MUNLAB/06 530	Α
	Método interno basado en:	
	"A short Note on	
	Calculating the Adjusted	
	SAR Index" Suarez D.L. et	
	al. ASABE 52:493-496 2009	
Índice de Ryznar por cálculo	PE/MUNLAB/06 860	Α
	Método interno basado en:	
	SM 2330 B	
Nitrógeno total Kjeldahl por cálculo	PE/MUNLAB/06 826	Α
(1-250 mg N/I)	Método interno basado en	
	SM 4500 - N A	
Salinidad total por cálculo	PE/MUNLAB/06 247	Α
(≥ 13,65 mg/l)	Método interno basado en	
	J. Rodier	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas residuales		
рН	PE/MUNLAB/06 14	Α
(1 - 12uds. de pH)	Método interno basado en:	
	SM 4500 - H ⁺ B	
Conductividad	PE/MUNLAB/06 15	Α
(10 - 101800 μS/cm)	Método interno basado en:	
	SM 2510 B	
Turbidez	PE/MUNLAB/06 16	Α
(0,4 - 400 UNF)	Método interno basado en:	
	UNE-EN ISO 7027-1	
Sólidos Sedimentables	PE/MUNLAB/06 21	Α
(≥ 0,1 ml/l)	Método interno basado en:	
	SM 2540 F	
Sólidos en suspensión	PE/MUNLAB/06 20	Α
(≥ 2 mg/l)	Método interno basado en:	
	UNE-EN 872	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas residuales		
Aceites y grasas por gravimetría (≥ 5 mg/l)	PE/MUNLAB/06 136 Método interno basado en: EPA 1664 B	А
Nitrógeno Kjedahl por titulación volumétrica (≥ 2 mg/l)	PE/MUNLAB/06 26 Método interno basado en: UNE-EN 25663	А
Carbonatos, Bicarbonatos y Alcalinidad por titulación potenciométrica Alcalinidad $(\geq 25 \text{ mg/l})$ Bicarbonatos $(\geq 25 \text{ mg/l})$ Carbonatos $(\geq 25 \text{ mg/l})$	PE/MUNLAB/06 17 Método interno basado en: UNE-EN ISO 9963-1	A
Demanda Bioquímica de Oxígeno (DBO $_5$) por método electrométrico ($\geq 3 \ mg \ O_2/I$)	PE/MUNLAB/06 563 Método interno basado en: UNE-EN 1899-2	Α
Demanda Bioquímica de Oxígeno (DBO $_5$) por método manométrico ($\geq 10~mg~O_2/I$)	PE/MUNLAB/06 23 Método interno basado en: SM 5210 D	А
Absorbancia a 254 nm por espectrofotometría UV-VIS (0.04-0.70 u.a)	PE/MUNLAB/06 284 Método interno basado en: SM 5910 B	А
Boro disuelto por espectrofotometría UV-VIS (≥ 0,5 mg /I)	PE/MUNLAB/06 09 Método interno basado en: ISO 9390	A
Cianuros Totales por espectrofotometría UV-VIS (≥ 15 mg/l)	PE/MUNLAB/06 568 Método interno basado en: ISO 6703-1	A
Color por espectrofotometría UV-VIS (≥ 5 mg Pt-Co/I)	PE/MUNLAB/06 31 Método interno basado en: UNE-EN ISO 7887	А
Cromo VI por espectrofotometría UV-VIS (≥ 0,05 mg/l)	PE/MUNLAB/06 853 Método interno basado en: SM 3500-Cr B	А
Demanda Química de Oxígeno (DQO) por espectrofotometría UV-VIS (≥ 10 mg/l)	PE/MUNLAB/06 18 Método interno basado en: SM 5220 D	А
Fenoles Totales por espectrofotometría UV-VIS (≥0,1 mg/l)	PE/MUNLAB/06 570 Método interno basado en: UNE-ISO 6439	А
Formaldehido por espectrofotometría UV-VIS (≥ 0,3 mg/l)	PE/MUNLAB/06 882 Método interno basado en: NIOSH 2016	А
Fosfatos por espectrofotometría UV-VIS (≥ 0,2 mg/I)	PE/MUNLAB/06 377 Método interno basado en: SM 4500 – P E	А
Fósforo total por espectrofotometría UV-VIS (≥ 0,05 mg/l)	PE/MUNLAB/06 377 Método interno basado en: SM 4500 – P E	А
Nitratos por espectrometría UV-VIS (≥ 1 mg/l)	PE/MUNLAB/06 459 Método interno basado en: DIN 38405-9	А

ENSAYO			NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Nitritos por espectrometría UV-VIS (≥ 0,05 mg/l)				А
Nitrógeno amoniacal por espectrometría UV-VIS (≥ 0,015 mg N/I)				А
or espectrofotom	netría UV-VIS (cálc	ulo a partir de nitrato)	PE/MUNLAB/06 459 Método interno basado en: ISO 7890-1	А
espectrofotome	tría UV-VIS		PE/MUNLAB/06 269 Método interno basado en: SM 4500 – N C	А
ofotometría UV-	/IS		PE/MUNLAB/06 881 Método interno basado en: Kit comercial	A
rofotometría UV-	·VIS		PE/MUNLAB/06 883 Método interno basado en SM 4500-S ²	A
Tensioactivos aniónicos por espectrofotometría UV-VIS (≥ 0,1 mg LAS/I)				А
Transmitancia a 254 nm por espectrofotometría UV-VIS (20 - 92%)			PE/MUNLAB/06 284 Método interno basado en SM 5910 B	А
(≥ 0,02 mg/l) M			PE/MUNLAB/06 800 Método interno basado en: UNE-EN ISO 14403–2	А
Nitritos por FIAS y espectrofotometría UV-VIS PE/MUNLAB/06 738 (≥ 0,02 mg/l) Método interno basado en:				А
Mercurio total por vapor frío y fluorescencia atómica $(\ge 0,003 \ mg/l)$ PE/I			PE/MUNLAB/06 429 Método interno basado en: UNE-EN ISO 17852	А
Boro disuelto por espectroscopia de plasma de acoplamiento inductivo (ICP/OES) IT/MUNLAB/06 25 76 Método interno basado en:				А
or espectroscopia (≥ 0,5 mg/l) (≥ 0,5 mg/l) (≥ 0,5 mg/l) (≥ 0,5 mg/l) (≥ 0,5 mg/l) (≥ 0,1 mg/l) (≥ 0,5 mg/l) (≥ 0,10 mg/l) (≥ 0,5 mg/l)	Estroncio Hierro Manganeso Molibdeno Níquel Plomo Selenio Titanio Vanadio	coplamiento inductivo $(\geq 0,5 \ mg/l)$ $(\geq 0,5 \ mg/l)$ $(\geq 0,1 \ mg/l)$ $(\geq 0,5 \ mg/l)$ $(\geq 0,1 \ mg/l)$ $(\geq 0,5 \ mg/l)$ $(\geq 0,1 \ mg/l)$	PE/MUNLAB/06 24 IT/MUNLAB/06 25 76 Métodos internos basados en: EPA 6010 D-1 (SW – 846)	A
	al por espectrom or espectrofotome respectrofotome rofotometría UV- rofotometría	rometría UV-VIS al por espectrometría UV-VIS or espectrofotometría UV-VIS (cálco respectrofotometría UV-VIS ofotometría UV-VIS rofotometría UV-VIS rofotometría UV-VIS nicos por espectrofotometría UV-VI 4 nm por espectrofotometría UV-VIS respectrofotometría UV-VIS espectrofotometría UV-VIS vapor frío y fluorescencia atómica espectroscopia de plasma de a (≥ 0,5 mg/l) Estroncio (≥ 0,5 mg/l) Hierro (≥ 0,5 mg/l) Manganeso (≥ 0,5 mg/l) Molibdeno (≥ 0,5 mg/l) Níquel (≥ 0,1 mg/l) Plomo (≥ 0,5 mg/l) Selenio (≥ 0,10 mg/l) Titanio	al por espectrometría UV-VIS or espectrofotometría UV-VIS (cálculo a partir de nitrato) respectrofotometría UV-VIS ofotometría UV-VIS ofotometría UV-VIS rofotometría UV-VIS rofotometría UV-VIS ricos por espectrofotometría UV-VIS 4 nm por espectrofotometría UV-VIS r FIAS y espectrofotometría UV-VIS espectrofotometría UV-VIS espectrofotometría UV-VIS vapor frío y fluorescencia atómica espectroscopia de plasma de acoplamiento inductivo or espectroscopia de plasma de acoplamiento inductivo (≥ 0,5 mg/l) Estroncio (≥ 0,5 mg/l) (≥ 0,5 mg/l) Hierro (≥ 0,5 mg/l) (≥ 0,5 mg/l) Manganeso (≥ 0,1 mg/l) (≥ 0,5 mg/l) Níquel (≥ 0,1 mg/l) (≥ 0,5 mg/l) Plomo (≥ 0,5 mg/l) (≥ 0,5 mg/l) Selenio (≥ 0,5 mg/l)	PE/MUNLAB/06 561 Método interno basado en: SM 4500 - NO ₂ B al por espectrofotometría UV-VIS Or espectrofotometría UV-VIS (cálculo a partir de nitrato) PE/MUNLAB/06 560 Método interno basado en: SM 4500 - NHa F Or espectrofotometría UV-VIS (cálculo a partir de nitrato) PE/MUNLAB/06 459 Método interno basado en: ISO 7890-1 PE/MUNLAB/06 269 Método interno basado en: SM 4500 - N C PE/MUNLAB/06 269 Método interno basado en: Kit comercial PE/MUNLAB/06 881 Método interno basado en: Kit comercial PE/MUNLAB/06 883 Método interno basado en: SM 4500 - SP PE/MUNLAB/06 883 Método interno basado en: SM 4500 - N C PE/MUNLAB/06 883 Método interno basado en: SM 4500 - SP PE/MUNLAB/06 883 Método interno basado en: EPA 425.1 PE/MUNLAB/06 378 Método interno basado en: EPA 425.1 PE/MUNLAB/06 378 Método interno basado en: EPA 425.1 PE/MUNLAB/06 800 Método interno basado en: UNE-EN ISO 13395 PE/MUNLAB/06 800 Método interno basado en: UNE-EN ISO 13395 PE/MUNLAB/06 329 Método interno basado en: UNE-EN ISO 13895 PE/MUNLAB/06 329 Método interno basado en: UNE-EN ISO 13895 PE/MUNLAB/06 329 Método interno basado en: UNE-EN ISO 13895 PE/MUNLAB/06 329 Método interno basado en: UNE-EN ISO 13895 PE/MUNLAB/06 329 Método interno basado en: UNE-EN ISO 13895 PE/MUNLAB/06 327 Método interno basado en: UNE-EN ISO 13895 PE/MUNLAB/06 327 Método interno basado en: UNE-EN ISO 13895 PE/MUNLAB/06 327 Método interno basado en: UNE-EN ISO 13895 PE/MUNLAB/06 25 76 Método interno basado en: UNE-EN ISO 13885 PE/MUNLAB/06 25 76 Método interno basado en: UNE-EN ISO 13885 PE/MUNLAB/06 25 76 Métodos internos basados en: UNE-EN ISO 13885 PE/MUNLAB/06 25 76 Métodos internos basados en: UNE-EN ISO 13885 PE/MUNLAB/06 25 76 Métodos internos basados en: UNE-EN ISO 13885 PE/MUNLAB/06 25 76 Métodos internos basados en: UNE-EN ISO 13885 PE/MUNLAB/06 25 76 Métodos internos basados en: UNE-EN ISO 13885 PE/MUNLAB/06 25 76 Métodos internos basados en: UNE-EN ISO 13885 PE/MUNLAB/06 25 76 Métodos internos basados en: UNE-EN ISO 13885 PE/MUNLAB/06 25 76 Métodos internos basados

	EN	ISAYO		NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas residuales					
Aniones por cromato	ografía iónica			PE/MUNLAB/06 120	Α
Bromuros	(≥ 0,5mg/l)			Método interno basado en:	
Cloruros	(≥ 1 mg/l)			UNE-EN ISO 10304-1	
Fluoruros	(≥ 0,1 mg/l)				
Nitratos	(≥ 1 mg/l)				
Nitrógeno Nítrico	(≥ 0,23 mg/l)				
Sulfatos	(≥ 5 mg/l)				
Aniones por cromato	ografia iónica			PE/MUNLAB/06 813	Α
Cloratos	(≥ 0,05 mg/l)			Método interno basado en:	
Cloritos	(≥ 0,05 mg/l)			UNE-EN ISO 10304-1	
Cationes por cromat	ografía iónica			PE/MUNLAB/06 120	Α
Amonio	(≥ 0,1 mg/l)	Potasio	(≥ 1 mg/l)	Método interno basado en:	
Calcio	(≥ 1 mg/l)	Sodio	(≥ 1 mg/l)	UNE-EN ISO 14911	
Magnesio	(≥ 1 mg/l)				
Compuestos Orgánia	cos Volátiles (C	OV) halogenad	os por cromatografía de	PE/MUNLAB/06 47	Α
gases/espectrometri	· · · · · · · · · · · · · · · · · · ·		os por cromatograna ac	Método interno basado en:	
1,1,2-tricloroetano	a ac masas (Ge)	1413)		UNE-EN ISO 10301	
1,1-dicloroetano				0142 214 130 13301	
1,2 dicloropropano					
1,2-diclorobenceno					
1,3-diclorobenceno					
1,4-diclorobenceno					
Bromodiclorometan	n				
Bromoformo					
Clorobenceno					
Dibromoclorometan	0				
Etilbenceno					
Tolueno					
	(≥	5 μg/I)			
Cloroformo (Tricloro	•	, 3. ,			
,	(≥ C),5 μg/l)			
Suma de Trihalomet	anos				
Cromo III por cálculo)			PE/MUNLAB/06 861	Α
(≥ 0,45 mg/l)				Método interno basado en:	
				SM 3500-Cr B	
Dureza total por cálo	culo			PE/MUNLAB/06 309	Α
(≥ 6,7 mg CaCO₃/I)				Método interno basado en:	
				SM 2340 B	
Nitrógeno total por o	cálculo			PE/MUNLAB/06 302	Α
				Método interno basado en:	
				SM 4500 – N A	
Nitrógeno total Kjelo	lahl por cálculo			PE/MUNLAB/06 826	Α
(1 - 250 mg N/I)				Método interno basado en	
				SM 4500 - N A	
Salinidad total por ca	álculo			PE/MUNLAB/06 247	Α
(≥ 13,65 mg/l)				Método interno basado en	
				J. Rodier	
Índice de Langelier-s	aturación por ca	ilculo		PE/MUNLAB/06 827	Α
				Método interno basado en:	
				SM 2330 B	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas residuales		
Índice Larson por cálculo	PE/MUNLAB/06 930 Método interno basado en: "Laboratory Studies Relating Mineral Quality of water to corrosion of Steel ans Cast Iron. (Larson T.E. et al. Circular 71. 1958	A
Índice de Ryznar por cálculo	PE/MUNLAB/06 860 Método interno basado en: SM 2330 B	А

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas marinas		
pH (1 - 12 uds. de pH)	PE/MUNLAB/06 14 Método interno basado en:	А
Conductividad	SM 4500 - H ⁺ B PE/MUNLAB/06 15	
(10 - 101800 μS/cm)	Método interno basado en: SM 2510 B	A
Turbidez (0,4 - 400 UNF)	PE/MUNLAB/06 16 Método interno basado en: UNE-EN ISO 7027-1	А
Sólidos sedimentables (≥ 0,1 ml/l)	PE/MUNLAB/06 21 Método interno basado en: SM 2540 F	А
Sólidos en suspensión (≥ 2 mg/l)	PE/MUNLAB/06 20 Método interno basado en: UNE-EN 872	А
Carbonatos, Bicarbonatos y Alcalinidad por titulación potenciométrica Alcalinidad $(\geq 25 \text{ mg/l})$ Bicarbonatos $(\geq 25 \text{ mg/l})$ Carbonatos $(\geq 25 \text{ mg/l})$	PE/MUNLAB/06 17 Método interno basado en: UNE-EN ISO 9963-1	А
Demanda Bioquímica de Oxígeno (DBO $_5$) por método manométrico ($\geq 10~mg~O_2/I$)	PE/MUNLAB/06 23 Método interno basado en: SM 5210 D	А
Amonio por espectrofotometría UV-VIS (≥ 0,05 mg/l)	PE/MUNLAB/06 05 Método interno basado en: SM 4500 - NH ₃ F	А
Amonio por espectrofotometría UV-VIS (≥ 0,025 mg/l)	PE/MUNLAB/06 624 Método interno basado en: SM 4500 - NH ₃ F	А
Fosfatos por espectrofotometría UV-VIS (≥ 0,2 mg/I)	PE/MUNLAB/06 377 Método interno basado en: SM 4500 – P E	А
Nitritos por espectrofotometría UV-VIS (≥ 0,02 mg/l)	PE/MUNLAB/06 06 Método interno basado en: SM 4500 - NO ₂ B	А

	EN	ISAYO		NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas marinas					
Sílice por espectr (≥ 0,11 mg /l)	rofotometría UV-VIS	i		PE/MUNLAB/06 864 Método interno basado en: SM 4500-SiO ₂ C	А
Fosfatos por FIAS (≥ 0,01 mg/I)	S y espectrofotomet	ría UV-VIS		PE/MUNLAB/06 740 Método interno basado en: UNE-EN ISO 15681-2	А
Nitritos por FIAS (≥ 0,0066 mg/l)	y espectrofotometr	ía UV-VIS		PE/MUNLAB/06 738 Método interno basado en: UNE-EN ISO 13395	А
Nitrógeno total o (≥ 0,014 mg/l)	oxidado por FIAS y e	spectro foto metría	UV-VIS	PE/MUNLAB/06 738 Método interno basado en: UNE-EN ISO 13395	А
Cationes por croi Calcio Magnesio Potasio	matografía iónica (≥10 mg/l) (≥10 mg/l) (≥10 mg/l)			PE/MUNLAB/06 120 Método interno basado en: UNE-EN ISO 14911	Α
Carbono Orgánic (≥ 0,5 mg/l)	co Total (COT) y disu	elto (COD) por esp	ectroscopía de IR	PE/MUNLAB/06 83 Método interno basado en: UNE-EN 1484	А
Mercurio disuelto de fluorescencia (≥ 0,0005 mg/l)		ción de vapor frío	y espectrofotometría	PE/MUNLAB/06 429 Método interno basado en: UNE-EN ISO 12846	А
	urio disuelto por ge	neración de vapor	frío y fluorescencia	PE/MUNLAB/06 454 Método interno basado en UNE-EN ISO 17852	А
	or espectroscopia	de plasma de ac	coplamiento inductivo	IT/MUNLAB/06 25 76 Método interno basado en: UNE-EN ISO 11885	А
Metales y metale inductivo (ICP/M Antimonio Arsénico Cadmio Calcio Cobalto Cobre Cromo Estaño Hierro Estroncio Magnesio		ectroscopia de pla Manganeso Molibdeno Níquel Plomo Potasio Selenio Talio Titanio Uranio Zinc	asma de acoplamiento $(\geq 10 \mu g/l)$ $(\geq 10 \mu g/l)$ $(\geq 2,5 \mu g/l)$ $(\geq 0,36 \mu g/l)$ $(\geq 10 m g/l)$ $(\geq 3 \mu g/l)$ $(\geq 0,5 \mu g/l)$ $(\geq 10 \mu g/l)$ $(\geq 10 \mu g/l)$ $(\geq 10 \mu g/l)$ $(\geq 18 \mu g/l)$	PE/MUNLAB/06 843 Método interno basado en: EPA 6020 B (SW-846)	A

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas marinas		
Compuestos Orgánicos Volátiles (COV) halogenados por cromatografía de gases /espectrometría de masas (GC/MS)	PE/MUNLAB/06 47 Método interno basado en: UNE-EN ISO 10301	А
Benceno 1,2 Dicloroetano Tetracloroeteno Tricloroeteno	UNE-EN 150 10301	
Suma de tetracloroeteno y tricloroeteno		
1,2,3-triclorobenceno 1,2,4-triclorobenceno o-Xileno Naftaleno Tetracloruro de carbono $(\geq 2 \mu g/l)$		
1,1,1-tricloroetano 1,2-diclorobenceno 1,3-diclorobenceno 1,4-diclorobenceno Bromodiclorometano Bromoformo Clorobenceno Dibromoclorometano Diclorobenceno (suma isómeros o-m-p) Diclorometano Etilbenceno Suma de Trihalometanos		
m y p- xileno Tolueno Xileno (suma isómeros o-m-p) $(\geq 5 \ \mu g/l)$ Cloroformo (Triclorometano) $(\geq 0.5 \ \mu g/l)$		
Hidrocarburos aromáticos policíclicos (HAP) por cromatografía de gases/espectrometría de masas (CG/MS) Benzo(b)fluoranteno Benzo(k)Fluroanteno Indeno(1,2,3-cd)pireno (≥ 0,005 μg/l) Antraceno	PE/MUNLAB/06 663 Método interno basado en: EPA 505	А
(≥ 0,01 μg/l) Suma de Hidrocarburos Policiclicos Aromaticos (PAHs)	PE/MUNLAB/06 729	

E	NSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas marinas		·	
Aclonifeno Alacloro Clorfenvinfos	ses/espectrometría de masas (CG/MS) Hexaclorobenceno Metolaclor	PE/MUNLAB/06 663 Método interno basado en: EPA 505	Α
(≥0	0,01 μg/l)		
Clorpirifos (clorpirifos-etil) 2,4 DDT (o,p'-DDT) 4,4 DDD (p,p'-DDD)	4,4 DDE (p,p'-DDE) Trifluralina ,005 μg/l)		
4,4 DDT (p-p'-DDT)	Quinoxifeno ,002 μg/l)		
Suma de Plaguicidas por cálculo	, , ,	PE/MUNLAB/06 628	
	s/espectrometría de masas (CG/MS)	PE/MUNLAB/06 663	Α
Atrazina Simazina Terbutilazina Terbutrina	(≥ 0,01 μg/l) (≥ 0,05 μg/l) (≥ 0,01μg/l) (≥ 0,001 μg/l)	Método interno basado en: EPA 505	
Índice Fan por cálculo		PE/MUNLAB/06 756 Método interno basado en: ECOQAC. Protocol d"avaluació de l"estat ecològic i quimic de les aigües costaneres. Agència Catalana de l'Aigua. Departament de Territori i sostenibilitat. Generalitat de Catalunya	А
Nitratos por cálculo (≥ 0,06 mg/l)		PE/MUNLAB/06 738 Método interno basado en: UNE-EN ISO 13395	А
Salinidad total por cálculo (≥ 13,65 mg/l)		PE/MUNLAB/06 247 Método interno basado en: J. Rodier	А
Índice de Langelier-saturación por c	álculo	PE/MUNLAB/06 827 Método interno basado en: SM 2330 B	А
Índice Larson por cálculo		PE/MUNLAB/06 930 Método interno basado en: "Laboratory Studies Relating Mineral Quality of water to corrosion of Steel ans Cast Iron. (Larson T.E. et al. Circular 71. 1958	А

II. Análisis microbiológicos

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y aguas envasadas		
Detección de Salmonella spp.	PE _M /MUNLAB/06 01 Método interno basado en: SM 9274 B	А
Detección de <i>Salmonella</i> spp. <i>(Filtración)</i>	PE _M /MUNLAB/06 43 Método interno basado en: SM 9274 B	А
Recuento en placa de microorganismos aerobios a 22°C y a 36°C	UNE-EN ISO 6222	Α
Recuento de coliformes (Filtración)	UNE-EN ISO 9308-1	А
Recuento de Escherichia coli (Filtración)	UNE-EN ISO 9308-1	А
Recuento de enterococos (Filtración)	UNE-EN ISO 7899-2	А
Recuento de Clostridium perfringens y sus esporas (Filtración)	UNE-EN ISO 14189	А
Recuento de colífagos somáticos (Filtración)	UNE-EN ISO 10705-2 UNE-EN ISO 10705-3	А

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y aguas continentales tratadas		
Recuento de <i>Pseudomonas aeruginosa</i> (Filtración)	PE _M /MUNLAB/06 83 Método interno basado en: RAPID`P.aeruginosa	А

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
Detección de Salmonella spp.	PE _M /MUNLAB/06 01 Método interno basado en:	А
	SM 9274 B	
Recuento en placa de microorganismos aerobios a 22°C y a 36°C	PE _M /MUNLAB/06 19 Método interno basado en: UNE-EN ISO 6222	A
Recuento de coliformes totales (Filtración)	PE _M /MUNLAB/06 31 Método interno basado en: UNE-EN ISO 9308-1	А
Recuento de Escherichia coli (Filtración)	PE _M /MUNLAB/06 04 Método interno basado en: UNE-EN ISO 9308-1	А
Recuento de enterococos (Filtración)	PE _M /MUNLAB/06 40 Método interno basado en: UNE-EN ISO 7899-2	A

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
Recuento de Clostridium perfringens y sus esporas (Filtración)	PE _M /MUNLAB/06 39 Método interno basado en: UNE-EN ISO 14189	А

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales tratadas		
Recuento de colífagos somáticos (Bacteriófagos somáticos)	PE _M /MUNLAB/06 67	Α
	Método interno basado en	
	UNE-EN-ISO 10705-2	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas residuales		
Detección de Salmonella spp.	PE _M /MUNLAB/06 01	Α
	Método interno basado en:	
	SM 9274 B	
Recuento en placa de microorganismos aerobios a 22°C y a 36°C	PE _M /MUNLAB/06 19	Α
	Método interno basado en:	
	UNE-EN ISO 6222	
Recuento de Escherichia coli	PE _M /MUNLAB/06 25	Α
(NMP)	Método interno basado en:	
	UNE-EN ISO 9308-2	
Recuento de Clostridium perfringens y sus esporas	PE _M /MUNLAB/06 39	Α
(Filtración)	Método interno basado en:	
	UNE-EN ISO 14189	
Recuento de colífagos somáticos (Bacteriófagos somáticos)	PE _M /MUNLAB/06 67	Α
	Método interno basado en	
	UNE-EN-ISO 10705-2	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas residuales depuradas y regeneradas		
Recuento de Escherichia coli	PE _M /MUNLAB/06 04	Α
(Filtración)	Método interno basado en:	
	UNE-EN ISO 9308-1	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas marinas		
Detección de <i>Salmonella</i> spp.	PE _M /MUNLAB/06 01	Α
	Método interno basado en:	
	SM 9274 B	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas marinas		
Detección de Salmonella spp.	PE _M /MUNLAB/06 43	Α
(Filtración)	Método interno basado en:	
	SM 9274 B	
Recuento en placa de microorganismos aerobios a 22°C y a 36°C	PE _M /MUNLAB/06 19	Α
	Método interno basado en:	
	UNE-EN ISO 6222	
Recuento de Escherichia coli	PE _M /MUNLAB/06 04	Α
(Filtración)	Método interno basado en:	
	UNE-EN ISO 9308-1	
Recuento de enterococos	PE _M /MUNLAB/06 40	Α
(Filtración)	Método interno basado en:	
	UNE-EN ISO 7899-2	

III. Análisis de Legionella

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo, aguas continentales y aguas residuales		
Recuento de <i>Legionella</i> spp.	UNE-EN ISO 11731	А
Identificación de <i>Legionella pneumophila</i> (Inmunoensayo)	ITM/MUNLAB/13 02 65 Método interno basado en: Kit comercial ^(*)	
Recuento de <i>Legionella pneumophila</i>	PE _M /MUNLAB/06 131 Rev 5 Método interno	А

^(*) La información sobre el kit concreto usado está disponible en el laboratorio

IV. Análisis organolépticos

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo		
Olor	UNE-EN 1622	Α
(Método de elección no forzada)		
Sabor	UNE-EN 1622	Α
(Método de elección no forzada)		

V. Análisis parasitológicos

ENSAYO				NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales, aguas residuales depu	ıradas y rege	enera	das		
Recuento de huevos de nemátodos i microscópica	intestinales	por	observación	PE _M /MUNLAB/06 60 Método interno basado en: Método Bailinger modificado por Bouhoum & Schwartzbrod. "Analysis of wastewater for use in agriculture" Ayres & Mara O.M.S. (1996)	A

VI. Análisis físico-químicos in situ

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo		
рН	PE/MUNLAB/06 338	I
(2 -12 uds. de pH)	Método interno basado en:	
	SM 4500 - H ⁺ B	
Conductividad	PE/MUNLAB/06 338	I
(133 - 10000 μS/cm)	Método interno basado en:	
	SM 2510 B	
Turbidez	PE/MUNLAB/06 338	I
(0,2 - 400 UNF)	Método interno basado en:	
	UNE-EN ISO 7027-1	
Oxígeno disuelto	PE/MUNLAB/06 338	I
(≥ 2 % saturación)	Método interno basado en:	
	UNE-EN ISO 5814	
Temperatura	PE/MUNLAB/06 338	1
(≥ 5 °C)	Método interno basado en:	
	SM 2550 B	
Cloro residual libre, total y combinado por espectrofotometría UV-VIS	PE/MUNLAB/06 338	I
(≥ 0,2 mg/l)	Método interno basado en:	
	SM 4500 - Cl G	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
рН	PE/MUNLAB/06 338	1
(2 -12 uds. de pH)	Método interno basado en:	
	SM 4500 - H ⁺ B	
Conductividad	PE/MUNLAB/06 338	I
(133 - 10000 μS/cm)	Método interno basado en:	
	SM 2510 B	
Turbidez	PE/MUNLAB/06 338	I
(0,4 - 400 UNF)	Método interno basado en:	
	UNE-EN ISO 7027-1	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales		
Oxígeno disuelto	PE/MUNLAB/06 338	I
(≥ 2 % saturación)	Método interno basado en:	
	UNE-EN ISO 5814	
Temperatura	PE/MUNLAB/06 338	I
(≥ 5 °C)	Método interno basado en:	
	SM 2550 B	
Salinidad por cálculo	PE/MUNLAB/06 338	I
(≥ 1 g/l)	Método interno basado en:	
	SM 2520 B	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales tratadas		
Cloro residual libre, total y combinado por espectrofotometría UV-VIS $(\ge 0.2 \text{ mg/I})$	PE/MUNLAB/06 338 Método interno basado en: SM 4500 - Cl G	I

ENSAYO	NORMA/PROCEDIMIENTO	CÓDIGO
ENSATO	DE ENSAYO	CODIGO
Aguas residuales		
рН	PE/MUNLAB/06 338	I
(2 - 12 uds. de pH)	Método interno basado en:	
	SM 4500 - H+ B	
Conductividad	PE/MUNLAB/06 338	1
(133 - 10000 μS/cm)	Método interno basado en:	
	SM 2510 B	
Turbidez	PE/MUNLAB/06 338	1
(0,4 - 400 UNF)	Método interno basado en:	
	UNE-EN ISO 7027-1	
Oxígeno disuelto	PE/MUNLAB/06 338	1
(≥ 2 % saturación)	Método interno basado en:	
	UNE-EN ISO 5814	
Temperatura	PE/MUNLAB/06 338	1
(≥ 5 °C)	Método interno basado en:	
	SM 2550 B	
Cloro residual libre, total y combinado por espectrofotometría UV-VIS	PE/MUNLAB/06 338	I
(≥ 0,2 mg/l)	Método interno basado en:	
	SM 4500 - Cl G	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas marinas		
pH (2 - 12 uds. de pH)	PE/MUNLAB/06 338 Método interno basado en: SM 4500 - H ⁺ B	I

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas marinas		
Conductividad	PE/MUNLAB/06 338	I
(1 - 60 mS/cm)	Método interno basado en:	
	SM 2510 B	
Turbidez	PE/MUNLAB/06 338	I
(1 - 10 UNF)	Método interno basado en:	
	UNE-EN ISO 7027-1	
Oxígeno disuelto	PE/MUNLAB/06 338	I
(≥ 2 % saturación)	Método interno basado en:	
	UNE-EN ISO 5814	
Temperatura	PE/MUNLAB/06 338	I
(≥ 5 °C)	Método interno basado en:	
	SM 2550 B	
Salinidad por cálculo	PE/MUNLAB/06 338	I
(≥ 1 g/l)	Método interno basado en:	
	SM 2520 B	

VII. Toma de muestra

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo		
Toma de muestra puntual para los análisis físico-químicos y microbiológicos	PE/MUNLAB/06 350	I
incluidos en el presente anexo técnico	Método interno basado en:	
	ISO 5667-5	
	UNE-EN ISO 19458	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales superficiales		
Toma de muestra puntual para los análisis físico-químicos, microbiológicos	PE/MUNLAB/06 350	1
y de nemátodos incluidos en el presente anexo técnico	Método interno basado en:	
	UNE-EN ISO 5667-6	
	UNE-EN ISO 19458	
Toma de muestra compuesta en función del tiempo para los análisis físico-	PE/MUNLAB/06 350	ı
químicos incluidos en el presente anexo técnico (excepto Compuestos	Método interno basado en:	
Orgánicos Volátiles)	UNE-EN ISO 5667-6	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas continentales subterráneas		
Toma de muestra puntual para los análisis físico-químicos incluidos en el	PE/MUNLAB/ 06 350	I
presente anexo técnico	Método interno basado en:	
	UNE-EN ISO 5667-11	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas residuales		
Toma de muestra puntual para los análisis físico-químicos y microbiológicos	PE/MUNLAB/06 350	I
incluidos en el presente anexo técnico	Método interno basado en:	
	ISO 5667-10	
	UNE-EN ISO 19458	
Toma de muestra compuesta en función del tiempo para los análisis físico-	PE/MUNLAB/06 350	1
químicos incluidos en el presente anexo técnico (excepto Compuestos	Método interno basado en:	
Orgánicos Volátiles)	ISO 5667-10	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas regeneradas, reutilizadas y vertidos salinos e hipersalinos		
Toma de muestra puntual para análisis microbiológicos y de nemátodos.	PE/MUNLAB/06 350 Método interno basado en: UNE-EN ISO 19458	I

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de transición y costeras		
Toma de muestra puntual en distintas profundidades para los análisis físico-	PE/MUNLAB/06 350	I
químicos y microbiológicos incluidos en el presente anexo técnico	Método interno basado en:	
	ISO 5667-9	
	UNE-EN ISO 19458	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas marinas		
Toma de muestra puntual para los análisis microbiológicos incluidos en el	PE/MUNLAB/06 350	I
presente anexo técnico	Método interno basado en:	
	UNE-EN ISO 19458	

VIII. Toma de muestra Legionella

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Aguas de consumo y aguas continentales		
 Toma de muestra para análisis de Legionella en: Circuitos de refrigeración y otras instalaciones que generen aerosoles (nebulizadores, humidificadores) AFCH y ACS (acumuladores, depósitos y puntos terminales) Spas, jacuzzis y similares Piscinas Sistemas de riego y fuentes ornamentales Ríos, Embalses, Balsas de riego 	PE/MUNLAB/06 350 Método interno basado en: RD 487/2022 Anexo VI	I

MUESTRAS SÓLIDAS

I. Análisis físico-químicos

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Lodos		
рН	PE/MUNLAB/06 14	Α
(2 - 12 uds. de pH)	Método interno basado en:	
	UNE-EN ISO 10390	
Residuo Seco	PE/MUNLAB/06 151	Α
(≥ 0,5 %)	Método interno basado en:	
	UNE-EN 15934	
Materia Volátil	PE/MUNLAB/06 158	Α
(≥ 10 %)	Método interno basado en:	
	UNE-EN 15935	
Humedad por método gravimétrico-residuo seco)	PE/MUNLAB/06 151	Α
(1 – 99,5 %)	Método interno basado en:	
	UNE-EN 12880	
Amonio y nitrógeno amoniacal por titulación volumétrica	PE/MUNLAB/06 297	Α
(≥ 0,25%)	Método interno basado en	
	SM 4500 NH3 B	
Nitrógeno total por titulación volumétrica	PE/MUNLAB/06 179	Α
(≥ 0,05%)	Método interno basado en	
	UNE-EN 13654-1	
Carbono total y carbono inorgánico total (TIC) por espectrosco	pia de IR PE/MUNLAB/06 83	Α
(0,1 %)	Método interno basado en:	
	UNE-EN 15936	
Mercurio total por vapor frío y fluorescencia atómica	PE/MUNLAB/06 429	Α
(≥ 0,05 mg/kg)	Método interno basado en:	
	UNE-EN ISO 17852	
Metales totales por espectroscopia de plasma de acoplamiento		Α
(ICP/OES)	PE/MUNLAB/06 30	
Arsénico (≥ 10 mg/Kg sms) Hierro (≥ 45 mg/Kg sms)		
Azufre $(\geq 25 \text{ mg/Kg sms})$ Magnesio $(\geq 10 \text{ mg/Kg})$	· ·	
Cadmio $(\geq 0.5 \text{ mg/Kg sms})$ Níquel $(\geq 5 \text{ mg/Kg sm})$		
Calcio $(\geq 50 \text{ mg/Kg sms})$ Plomo $(\geq 40 \text{ mg/Kg})$		
Cromo ($\geq 0.5 \text{ mg/Kg sms}$) Potasio ($\geq 50 \text{ mg/Kg}$		
Cobre $(\geq 2 mg/Kg sms)$ Zinc $(\geq 10 mg/Kg sms)$	sms)	
Fosforo (≥ 400 mg/Kg sms)		
Relación Carbono/Nitrógeno por cálculo	PE/MUNLAB/06 889	Α
	Método interno basado en:	
	AAA/1072/2013 de 7 de junio	
Carbono orgánico total (TOC) por cálculo	PE/MUNLAB/06 83	Α
(0,1%)	Método interno basado en:	
	UNE-EN 15936	
Materia orgánica por cálculo	PE/MUNLAB/06 83	Α
(0,17%)	Método interno basado en:	
	UNE-EN 15936:2012	

ENSAYO			NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO	
Sedimentos					
рН				PE/MUNLAB/06	Α
(2-12 uds. d	е рН)			Método interno basado en:	
				UNE-EN ISO 10390	
	al y carbono inorgánico tot	al (TIC) por e	spectroscopia de IR	PE/MUNLAB/06 83	Α
(≥ 0,1% C)				Método interno basado en:	
				UNE-EN 15936	
Mercurio to	tal por vapor frío y fluoresc	encia atómic	a	PE/MUNLAB/06 429	Α
(≥ 0,05 mg/l	kg)			Método interno basado en:	
				UNE-EN ISO 17852	
Metales totales por espectroscopia de plasma de acoplamiento inductivo			PE/MUNLAB/06 400	Α	
(ICP/OES)		-	·	PE/MUNLAB/06 30	
Arsénico	(≥ 10 mg/Kg sms)	Hierro	(≥ 45 mg/Kg sms)	Método interno basado en:	
Cadmio	(≥ 0,5 mg/Kg sms)	Níquel	(≥ 5 mg/Kg sms)	UNE-EN ISO 16170	
Cromo	(≥ 0,5 mg/Kg sms)	Plomo			
Cobre	(≥ 2 mg/Kg sms)	Zinc	(≥ 10 mg/Kg smsl)	PE/MUNLAB/06 30	
				Método interno basado en:	
				EPA 3050 B	
Carbono org	gánico total (TOC) por cálcul	lo		PE/MUNLAB/06 83	Α
(0,1%)	, , , ,			Método interno basado en	
, ,				UNE-EN 15936	
Materia org	ánica por cálculo			PE/MUNLAB/06 83	Α
(0,17%)				Método interno basado en:	
				UNE-EN 15936:2012	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO	
Residuo Sólido			
Carbono total y carbono inorgánico total (TIC) por espectroscopia de IR (≥ 0,1% C)	PE/MUNLAB/06 83 Método interno basado en: UNE-EN 15936	А	
Carbono orgánico total (TOC) por cálculo	PE/MUNLAB/06 83 Método interno basado en: UNE-EN 15936	А	

II. Análisis Microbiológicos

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Lodos		
Detección de Salmonella spp.	PEM/MUNLAB/06 158 UNE-EN ISO 6579	А

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Lodos		
Recuento de Escherichia coli	PEM/MUNLAB/06 126	Α
(NMP)	Método interno basado en:	
	The Microbiology of	
	Recreational and	
	Environmental Waters (2016)	
	– Part 3 – Methods for the	
	isolation and enumeration of	
	Escherichia coli (including E.	
	coli O157:H7) Methods for	
	the Examination of Waters	
	and Associated Material	

NSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Sedimentos		
Recuento de Escherichia coli (NMP)	PEM/MUNLAB/06 126 Método interno basado en: The Microbiology of Recreational and Environmental Waters (2016) – Part 3 – Methods for the isolation and enumeration of Escherichia coli (including E. coli O157:H7) Methods for the Examination of Waters and Associated Material	А

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Placas de contacto		
Recuento en placa de microorganismos aerobios a 30 °C	PE _M /MUNLAB/06 44	Α
	Método interno basado en:	
	UNE-EN ISO 4833-1	
Recuento en placa de enterobacterias a 37 °C	PE _M /MUNLAB/06 45	Α
	Método interno basado en:	
	ISO 21528-2	
Recuento de mohos y levaduras a 25 °C	PE _M /MUNLAB/06 47	Α
	Método interno basado en:	
	BAM capítulo 18	

III. Análisis biológicos

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Praderas de Fanerógamas marinas (Posidonia oceánica, Cymodocea nodosa	, Zostera noltii, Zostera oceánic	a)
Análisis de variables de la planta:	PE/MUNLAB/06 811	Α
• nº de hojas	Método interno basado en	
• longitud de hojas (cm)	Protocolos de evaluación de	
anchura de las hojas (cm)	estado	
• nº de hojas mordidas	ecológico y químico de las	
	aguas	
Por cálculo:	costeras (ECOQAC) apartado	
Superficie foliar (cm2/haz)	2.1.3.3	
• Tasa-Presión de herbívoros (%)	Protocolo 3-Otra flora	
	acuática.	
	Posidonia oceánica	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Comunidades bentónicas sésiles (Gorgonias, Pinna sp, Caulerpa sp, Lithophaga lithophaga,)		
Análisis de variables :	PE/MUNLAB/06 811	Α
Densidad Individuos "Especie Bentónica Sesil Objetivo" cuadrante	Método interno basado en	
Densidad Individuos "Especie Bentónica Sesil Objetivo" lineal	IEO, 2010. Las praderas de	
Cobertura Individuos "Especie Bentónica Sesil Objetivo" estima	Posidonia oceánica en	
visual	Murcia. Red	
Cobertura Individuos "Especie Bentónica Sesil Objetivo" lineal	de seguimiento y	
Y cálculo de la densidad Global Individuos "Especie Bentónica Sesil Objetivo"	voluntariado	
	ambiental.	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Macroalgas en aguas litorales		
Índice CARLIT por cálculo	PE/MUNLAB/06 801 Método interno basado en: Ballesteros, E et al 2007. A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive.	A

IV. Análisis biológicos in situ

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Praderas de Fanerógamas marinas (Posidonia oceánica, Cymodocea nodosa	Zostera noltii, Zostera oceánic	a)
Análisis de variables: Densidad de haces (haces/m2) Cobertura haces estima visual (%) Crecimiento Ortótropo (%) Crecimiento Plagiotropo (%) Grado desenterramiento/enterramiento (cm) Densidad de floración (flores/m2) Densidad Pinna sp (individuos/m2) Densidad Espirografos (individuos/m2) Densidad Erizos de mar (individuos/m2) Densidad Holoturias (individuos/m2) Densidad Estrellas de mar (individuos/m2) Densidad Estrellas de mar (individuos/m2) Anchura hojas (cm) Anchura hojas (cm) Nº hojas mordidas	PE/MUNLAB/06 811 Método interno basado en IEO, 2010. Las praderas de Posidonia oceánica en Murcia. Red de seguimiento y voluntariado ambiental	
Por cálculo: • Densidad global de haces (haces/m2) • Superficie foliar (cm2/haz) • Tasa-Presión de herbívoros (%)		

V. Toma de muestra

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Lodos		
Toma de muestra puntual para los análisis físico-químicos y microbiológicos incluidos en el presente anexo técnico	PE/MUNLAB/06 367 Método interno basado en: UNE-EN ISO 5667-13	I

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Sedimentos		
Toma de muestra puntual mediante draga Van Veen o corer, para los análisis	PE/MUNLAB/06 367	I
físico-químicos incluidos en el presente anexo técnico	Método interno basado en:	
	ISO 5667-19	

ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO	CÓDIGO
Praderas de Fanerógamas marinas (Posidonia oceanica, Cymodocea nodos	sa, Zostera sp., Sebadales)	
Praderas de Fanerógamas marinas (Posidonia oceanica, Cymodocea nodosa, Zostera sp., Sebadales)	PE/MUNLAB/06 367 Método interno basado en: Protocolos de evaluación de estado ecológico y químico de las aguas costeras (ECOQAC)	I
	apartado 2.1.3.3 Protocolo 3- Otra flora acuática. Posidonia oceánica	

Un método interno se considera que está basado en métodos normalizados cuando su validez y su adecuación al uso se han demostrado por referencia a dicho método normalizado y en ningún caso implica que ENAC considere que ambos métodos sean equivalentes. Para más información recomendamos consultar el Anexo I al CGA-ENAC-LEC.

Emplazamientos desde los que se llevan a cabo actividades in situ:

