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1 INTRODUCTION 
 

1.1 This document sets down the principles of and the requirements for the evaluation of 

the uncertainty of measurement in calibration and the statement of this uncertainty in 

calibration certificates based on the ILAC policy for uncertainty in calibration as stated 

in the ILAC P14 [ref. 5]. Both ILAC-P14 and EA-4/02 are mandatory for Accreditation 

Bodies that are EA members. The formulation is kept on a general level to suit all 

fields of calibration. The method outlined may have to be supplemented by more 

specific advice for different fields, to make the information more readily applicable. In 

developing such supplementary guidelines, the general principles stated in this 

document should be followed to ensure harmonisation between the different fields. 

 

1.2 The formulation in this document is in accordance with JCGM 100:2008, Evaluation 

of measurement data – Guide to the Expression of uncertainty in measurement (GUM 

1995 with minor correction). That document has been elaborated by the Joint 

Committee for Guides in Metrology, in which participate BIPM, IEC, IFCC, ILAC, ISO, 

IUPAC, IUPAP and OIML. [ref. 1]. But whereas [ref. 1] establishes general rules for 

evaluating and expressing uncertainty in measurement that can be followed in most 

fields of physical measurements, this document concentrates on the method most 

suitable for the measurements in calibration laboratories and describes an 

unambiguous and harmonised way of evaluating and stating the uncertainty of 

measurement. However, other approaches proposed by the GUM and its 

supplements (as for example the Monte Carlo method) are acceptable. It comprises 

the following subjects:  

• definitions basic to the document; 

• methods for evaluating the uncertainty of measurement of input quantities in a 

measurement model; 

• relationship between the uncertainty of measurement of the output quantity and 

the evaluated uncertainty of the input quantities; 

• expanded uncertainty of measurement of the output quantity in a measurement 

model; 

• statement of the uncertainty of measurement; 

• a step-by-step procedure for calculating the uncertainty of measurement. 

 

Evaluation of uncertainty of calibration is also addressed in several of the EURAMET’s 

calibration guidelines available at www.euramet.org  

 

 

2 OUTLINE AND DEFINITIONS 

 

Note: Terms of special relevance to the context of the main text are written in 

bold when they appear for the first time in this document. Appendix B contains a 

glossary of these terms together with references.  

 

2.1 The statement of the result of a measurement is complete only if it contains both the 

value attributed to the measurand and the uncertainty of measurement associated 

with that value. In this document all quantities which are not exactly known are treated 

http://www.euramet.org/
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as random variables, including the influence quantities which may affect the 

measured value.  

 

2.2 The uncertainty of measurement is a non-negative parameter characterizing the 

dispersion of the quantity values being attributed to a measurand, based on the 

information used [ref. 3]. In this document the shorthand term uncertainty is used for 

uncertainty of measurement if there is no risk of misunderstanding. For typical 

sources of uncertainty in a measurement see the list given in Appendix C.  

 

2.3 The measurands are the quantities intended to be measured. In calibration one 

usually deals with only one measurand or output quantity Y that depends upon a 

number of input quantities Xi (i = 1, 2 ,…, N)  according to the functional relationship 

 

Y = f(X1, X2, …, X
N 

) (2.1)  

 

The measurement function f represents a function of the input quantities, which, 

when calculated using known values for the input quantities, is a measured value of 

the output quantity.’ 

. It describes how values of the output quantity Y are obtained from values of the input 

quantities Xi. In most cases it will be an analytical expression, but it may also be a 

group of such expressions which include corrections and correction factors for 

systematic effects, thereby leading to a more complicated relationship that is not 

written down as one function explicitly. Further, f may be determined experimentally, 

or may exist only as a computer algorithm that must be evaluated numerically, or it 

may be a combination of any of these.  

 

2.4 If they are independent, the set of input quantities Xi may be grouped into two 

categories according to the way in which the value of the quantity and its associated 

uncertainty have been determined:  

(a) quantities whose estimate and associated uncertainty are directly determined in 

the current measurement. These values may be obtained, for example, from a 

single observation, repeated observations, or judgement based on experience. 

They may involve the determination of corrections to instrument readings as well 

as corrections for influence quantities, such as ambient temperature, barometric 

pressure or humidity; 

(b) quantities whose estimate and associated uncertainty are brought into the 

measurement from external sources, such as quantities associated with 

calibrated measurement standards, certified reference materials or reference 

data obtained from handbooks.  

If the input quantities are not independent, see clause 4.6. 

 

2.5 An estimate of the measurand Y, the output estimate denoted by y, is obtained from 

equation (2.1) using input estimates xi for the values of the input quantities Xi 

 

y f x x xN= ( , ,.., )1 2
 (2.2)  
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It is understood that the input values are best estimates that have been corrected for 

all effects significant for the model. If not, the necessary corrections have been 

introduced as separate input quantities.  

 

2.6 For a random variable the variance of its distribution or the positive square root of the 

variance, called standard deviation, is used as a measure of the dispersion of its 

values. The standard uncertainty of measurement associated with the output 

estimate or measurement result y, denoted by u(y), is the standard deviation of the 

measurand Y. It is to be determined from the estimates xi of the input quantities Xi 

and their associated standard uncertainties u(xi).  

 

The standard uncertainty associated with an estimate has the same unit as the 

estimate.  

In some cases, the relative standard uncertainty of measurement may be 

appropriate which is the standard uncertainty of measurement associated with an 

estimate divided by the modulus of that estimate and is therefore dimensionless. This 

concept cannot be used if the estimate equals zero. 

 

 

3 EVALUATION OF THE UNCERTAINTY OF MEASUREMENT OF INPUT 

ESTIMATES 

 
General considerations 

 

3.1.1 The uncertainty of measurement associated with the input estimates is evaluated 

according to either a 'Type A' or a 'Type B' method of evaluation. The Type A 

evaluation of standard uncertainty is the method of evaluating the uncertainty by 

the statistical analysis of a series of observations. In this case the standard uncertainty 

is the experimental standard deviation of the mean that follows from an averaging 

procedure or an appropriate regression analysis. The Type B evaluation of 

standard uncertainty is the method of evaluating the uncertainty by means other 

than the statistical analysis of a series of observations, typically by assigning an 

appropriate probability distribution function to the input quantity. In this case the 

evaluation of the standard uncertainty is based on some other scientific knowledge.  

 

Note: There are occasions, seldom met in calibration, when all possible values of a 

quantity lie on one side of a single limit value. A well-known case is the so-called 

cosine error. For the treatment of such special cases, see [ref. 1]. 

 

Type A evaluation of standard uncertainty 

 

3.2.1 Type A evaluation of standard uncertainty can be applied when several independent 

observations have been made for one of the input quantities under the same 

conditions of measurement. If there is sufficient resolution in the measurement 

process, there will be an observable scatter or spread in the values obtained.  
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3.2.2 Assume that the repeatedly measured input quantity Xi is the quantity Q. With n 

statistically independent observations (n > 1), the estimate of the quantity Q is q , the 

arithmetic mean or the average of the individual observed values qj  

(j = 1, 2, …, n) 

 

q
n

q j
j

n

=
=


1

1

 (3.1)  

 

The uncertainty of measurement associated with the estimate q  is evaluated 

according to one of the following methods: 

 

(a) An estimate of the variance of the underlying probability distribution is the 

experimental variance s²(q) of values qj that is given by 

 

s q
n

q qj
j

n
2

1

21

1
( ) ( )=

−
−

=

  (3.2)  

 

Its (positive) square root is termed experimental standard deviation. If the 

quantity reported is the arithmetic mean q , the best estimate of the variance of 

the mean is the experimental variance of the mean given by 

 

s q
s q

n

2

2

( )
( )

=  (3.3)  

 

Its (positive) square root is termed experimental standard deviation of the 

mean. The standard uncertainty u q( )  associated with the input estimate q  is the 

experimental standard deviation of the mean 

 

u q s q( ) ( )=  (3.4)  

 

Warning: Generally, when the number n of repeated measurements is low (n < 

10), the reliability of a Type A evaluation of standard uncertainty, as expressed 

by equation (3.4), must be considered. If the number of observations cannot be 

increased, other means of evaluating the standard uncertainty given in the text 

must be considered.  

 

(b) For a measurement that is well-characterised and under statistical control a 

combined or pooled estimate of variance sp

2
 may be available that 

characterises the dispersion better than the estimated standard deviation 

obtained from a limited number of observations. If in such a case the value of the 

input quantity Q is determined as the arithmetic mean q  of a small number  n of 

independent observations, the variance of the mean may be estimated by 

s q
s

n

2

2

( )
p

=  (3.5)  

The standard uncertainty is deduced from this value by equation (3.4). 
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Type B evaluation of standard uncertainty 

 

3.3.1 Type B evaluation of standard uncertainty is the method of uncertainty evaluation 

associated with an estimate xi of an input quantity Xi by means other than the 

statistical analysis of a series of observations. The standard uncertainty u(xi) is 

evaluated by scientific judgement based on all available information on the possible 

variability of Xi. Values belonging to this category may be derived from 

• previous measurement data; 

• experience with or general knowledge of the behaviour and properties of relevant 

materials and instruments; 

• manufacturer’s specifications; 

• data provided in calibration and other certificates; 

• uncertainties assigned to reference data taken from handbooks. 

 

3.3.2 The proper use of the available information for a Type B evaluation of standard 

uncertainty of measurement calls for insight based on experience and general 

knowledge. It is a skill that can be learned with practice. A well-based Type B 

evaluation of standard uncertainty can be as reliable as a Type A evaluation of 

standard uncertainty, especially in a measurement situation where a Type A 

evaluation is based only on a comparatively small number of statistically independent 

observations. The following cases must be discerned: 

(a) When only a single value is known for the quantity Xi, e.g., a single measured 

value, a resultant value of a previous measurement, a reference value from the 

literature, or a correction value, this value will be used for xi. The standard 

uncertainty u(xi) associated with xi is to be adopted where it is given. Otherwise, 

it has to be calculated from unequivocal uncertainty data. If the number of 

observations cannot be increased, a different approach to estimation of the 

standard uncertainty given in b) has to be considered.  

(b) When a probability distribution can be assumed for the quantity Xi, based on 

theory or experience, then the appropriate expectation or expected value and the 

square root of the variance of this distribution have to be taken as the estimate xi 

and the associated standard uncertainty u(xi), respectively.  

(c) If only upper and lower limits a+ and a– can be estimated for the value of the 

quantity Xi (e.g., manufacturer’s specifications of a measuring instrument, a 

temperature range, a rounding or truncation error resulting from automated data 

reduction), a probability distribution with constant probability density between these 

limits (rectangular probability distribution) has to be assumed for the possible 

variability of the input quantity Xi. According to case (b) above this leads to 

 

 x a ai = ++ −

1

2
( ) (3.6)  

 

for the estimated value and 

 

 u x a ai

2 21

12
( ) ( )= −+ −

 (3.7)  
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for the square of the standard uncertainty. If the difference between the limiting 

values is denoted by 2a, equation (3.7) yields 

u x ai

2 21

3
( ) =  (3.8)  

 

The rectangular distribution is a reasonable description in probability terms of 

one’s inadequate knowledge about the input quantity Xi in the absence of any 

other information than its limits of variability. But if it is known that values of the 

quantity in question near the centre of the variability interval are more likely than 

values close to the limits, a triangular or normal distribution may be a better 

model. On the other hand, if values close to the limits are more likely than values 

near the centre, a U-shaped distribution may be more appropriate. For the 

evaluation of uncertainty in these cases see [ref. 1]. 

 

 

4 CALCULATION OF THE STANDARD UNCERTAINTY OF THE OUTPUT 

ESTIMATE 

 

4.1 For uncorrelated input quantities the square of the standard uncertainty associated 

with the output estimate y is given by 

 

 u y u yi
i

N
2 2

1

( ) ( )=
=

  (4.1)  

 

The quantity ui(y) (i = 1, 2, …, N) is the contribution to the standard uncertainty 

associated with the output estimate y resulting from the standard uncertainty 

associated with the input estimate xi 

 

ui(y) = ciu(xi) (4.2)  

 

where ci is the sensitivity coefficient associated with the input estimate xi, i.e., the 

partial derivative of the model function f with respect to Xi, evaluated at the input 

estimates xi, 

 

1 1 2, ..... ni X x x x

i i

f f
c

x x
=

 
= =
 

 (4.3)  

 

Note: There are cases, seldom occurring in calibration, where the model function is 

strongly non-linear or some of the sensitivity coefficients [see equation (4.2) and (4.3)] 

vanish and higher order terms have to be included into equation (4.1). For a treatment 

of such special cases see ref. 1 and Supplement Examples S4 and S13. 

 

4.2 The sensitivity coefficient ci describes the extent to which the output estimate y is 

influenced by variations of the input estimate xi. It can be evaluated from the model 

function f by equation (4.3) experimentally, or by using numerical methods, i.e., by 

calculating the change in the output estimate y due to a corresponding change in the 
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input estimate xi of +u(xi) and -u(xi) and taking as the value of ci the resulting difference 

in y divided by 2u(xi). Sometimes it may be more appropriate to find the change in the 

output estimate y from an experiment by repeating the measurement at e.g., xi  u(xi). 

 

4.3 Whereas u(xi) is always positive, the contribution ui(y) according to equation (4.2) is 

either positive or negative, depending on the sign of the sensitivity coefficient ci. The 

sign of ui(y) has to be taken into account in the case of correlated input quantities, see 

equation (D4) of Appendix D.  

 

4.4 If the model function f is a linear combination of the input quantities Xi with 

multiplicative factors pi 

 

f X X X p XN i i
i

N

( , , , )1 2
1

 =
=

  (4.4)  

 

the output estimate according to equation (2.2) is given by the corresponding linear 

combination of the input estimates 

 

y p xi i
i

N

=
=


1

 (4.5)  

 

whereas the sensitivity coefficients equal pi and equation (4.1) converts to 

 

u y p u xi i

i

N
2 2 2

1

( ) ( )=
=

  (4.6)  

 

4.5 If the model function f is a product or quotient of the input quantities Xi raised to powers 

pi 

 

f X X X c XN i

p

i

N

i( , , , )1 2
1

 =
=

  (4.7)  

the output estimate is the corresponding product or quotient of the input estimates 

 

y c xi

p

i

N

i=
=


1

 (4.8)  

 

The sensitivity coefficients equal piy/xi in this case and an expression analogous to 

equation (4.6) is obtained from equation (4.1), if relative standard uncertainties w(y) = 

u(y)/y and w(xi) = u(xi)/xi are used,  

 

w y p w xi i

i

N
2 2 2

1

( ) ( )=
=

  (4.9)  

 

4.6 If two input quantities Xi and Xk are correlated to some degree, i.e., if they are 

mutually dependent, their covariance also must be considered as a contribution to 
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the uncertainty. See Appendix D for how this must be done. The ability to take into 

account the effect of correlations depends on the knowledge of the measurement and 

on the judgement of mutual dependency of the input quantities. In general, neglecting 

correlations between input quantities can lead to an incorrect evaluation of the 

standard uncertainty of the measurand.  

 

4.7 The covariance associated with the estimates of two input quantities Xi and Xk may 
be taken to be zero or treated as insignificant if 

(a) the input quantities Xi and Xk are independent, for example, because they have 
been repeatedly but not simultaneously observed in different independent 
experiments or because they represent resultant quantities of different 
evaluations that have been made independently, or if 

(b) either of the input quantities Xi and Xk can be treated as constant, or if 

(c) investigation gives no information indicating the presence of correlation between 
the input quantities Xi and Xk. 

 
Sometimes correlations can be eliminated by a proper choice of the model function.  
See, for example, Appendix D, para. D.6 
 

4.8 The uncertainty analysis for a measurement — sometimes called the uncertainty 
budget of the measurement — should include a list of all sources of uncertainty 
together with the associated standard uncertainties of measurement and the methods 
of evaluating them. For repeated measurements the number n of observations also 
must be stated. For the sake of clarity, it is recommended to present the data relevant 
to this analysis in the form of a table. In this table all quantities should be referenced 
by a physical symbol Xi or a short identifier. For each of them at least the estimate xi, 
the associated standard uncertainty of measurement u(xi), the sensitivity coefficient 
ci and the different uncertainty contributions ui(y) should be specified. The 
measurement unit of each of the quantities should also be stated with the numerical 
values given in the table.  
 

4.9 A formal example of such an arrangement is given as Table 4.1 applicable for the 
case of uncorrelated input quantities. The standard uncertainty associated with the 
measurement result u(y) given in the bottom right corner of the table is the root sum 
square of all the uncertainty contributions in the outer right column. The grey part of 
the table is not completed. 

 
Table 4.1: Schematic of an ordered arrangement of the quantities, estimates, standard 
uncertainties, sensitivity coefficients and uncertainty contributions used in the uncertainty 
analysis of a measurement. 
 

Quantity 
 
Xi 

Estimate 
 
xi 

Standard 
uncertainty 
u(xi) 

Probability 
distribution 

Sensitivity 
coefficient  
ci 

Contribution to the 
standard 
uncertainty 
ui(y) 

X1 x1 u(x1) Prob. dist. 1 c1 u1(y) 

X2 x2 u(x2) Prob. dist. 2 c2 u2(y) 

: : :  : : 

X
N
 x

N
 u(x

N
) Prob. dist. N c

N
 u

N
(y) 

Y y    u(y) 
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5 EXPANDED UNCERTAINTY OF MEASUREMENT 

 

5.1 Within EA it has been decided that calibration laboratories accredited by members of 

the EA shall state an expanded uncertainty of measurement U, obtained by 

multiplying the standard uncertainty u(y) of the output estimate y by a coverage 

factor k, 
 

U = ku(y) (5.1)  
 

In cases where a normal (Gaussian) distribution can be attributed to the measurand 

and the standard uncertainty associated with the output estimate has sufficient 

reliability, the standard coverage factor k = 2 shall be used. The assigned expanded 

uncertainty corresponds to a coverage probability of approximately 95 %. These 

conditions are fulfilled in the majority of cases encountered in calibration work.  

 

5.2 The assumption of a normal distribution cannot always be easily confirmed 

experimentally. However, in the cases where several (i.e., N  3) uncertainty 

components, derived from well-behaved probability distributions of independent 

quantities, e.g., normal distributions or rectangular distributions, contribute to the 

standard uncertainty associated with the output estimate by comparable amounts, the 

conditions of the Central Limit Theorem are met, and it can be assumed to an 

adequate degree of approximation that the distribution of the output quantity is normal.  

 

5.3 The reliability of the standard uncertainty assigned to the output estimate is 

determined by its effective degrees of freedom (see Appendix E). However, the 

reliability criterion is satisfied if none of the uncertainty contributions is obtained from 

a Type A evaluation based on fewer than ten repeated observations.  

 

5.4 If one of these conditions (normality or sufficient reliability) is not fulfilled, the standard 

coverage factor k = 2 can yield an expanded uncertainty corresponding to a coverage 

probability of less than 95 %. In these cases, in order to ensure that a value of the 

expanded uncertainty is quoted corresponding to the same coverage probability as in 

the normal case, other procedures have to be followed. The use of approximately the 

same coverage probability is essential whenever two results of measurement of the 

same quantity have to be compared, e.g., when evaluating the results of an inter-

laboratory comparison or assessing compliance with a specification.  

 

5.5 Even if a normal distribution can be assumed, it may still occur that the standard 

uncertainty associated with the output estimate is of insufficient reliability. If, in this 

case, it is not expedient to increase the number n of repeated measurements or to 

use a Type B evaluation instead of the Type A evaluation of poor reliability, the 

method given in Appendix E should be used.  

 

5.6 For the remaining cases, i.e., all cases where the assumption of a normal distribution 

cannot be justified, information on the actual probability distribution of the output 

estimate must be used to obtain a value of the coverage factor k that corresponds to 

a coverage probability of approximately 95 %. 

The Monte Carlo method of GUM Supplement 1 can be applied in such cases. 
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6 STEP-BY-STEP PROCEDURE FOR CALCULATING THE UNCERTAINTY 

OF MEASUREMENT 

 

6.1 The following is a guide to the use of this document in practice (cf. worked examples 

in the supplement): 

(a) Express in mathematical terms the dependence of the measurand (output 

quantity) Y on the input quantities Xi according to equation (2.1). In the case of a 

direct comparison of two standards the equation may be very simple, e.g., Y = X1-

X2. 

(b) Identify and apply all significant corrections.  

(c) List all sources of uncertainty in the form of an uncertainty analysis in accordance 

with Section 4.  

(d) Calculate the standard uncertainty u q( )  for repeatedly measured quantities in 

accordance with sub-section 3.2.  

(e) For single values, e.g., resultant values of previous measurements, correction 

values or values from the literature, adopt the standard uncertainty where it is 

given or can be calculated according to paragraph 3.3.2 (a). If no data are 

available from which the standard uncertainty can be derived, state a value of 

u(xi) on the basis of scientific experience.  

(f) For input quantities for which the probability distribution is known or can be 

assumed, calculate the expectation and the standard uncertainty u(xi) according 

to paragraph 3.3.2 (b). If only upper and lower limits are given or can be 

estimated, calculate the standard uncertainty u(xi) in accordance with 

paragraph 3.3.2 (c).  

(g) Calculate for each input quantity Xi the contribution ui(y) to the standard 

uncertainty associated with the output estimate resulting from the input estimate 

xi according to equations (4.2) and (4.3) and sum their squares as described in 

equation (4.1) to obtain the square of the standard uncertainty u(y) of the 

measurand. If input quantities are known to be correlated, apply the procedure 

given in Appendix D.  

(h) Calculate the expanded uncertainty U by multiplying the standard uncertainty u(y) 

associated with the output estimate by a coverage factor k chosen in accordance 

with Section 5.  

(i) Report the result of the measurement comprising the estimate y of the 

measurand, the associated expanded uncertainty U and the coverage factor k in 

the calibration certificate in accordance with Section 6 of ILAC P14 [ref. 5]. 

 

Note: In some circumstances the acceptability of calibration results is to be decided 

by comparing them against a specification. The decision is made according to an 

agreed Decision Rule which states how to take account of the associated uncertainty 

of measurement. Appendix F gives some brief guidance on the subject.  
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APPENDIX A 

CALIBRATION AND MEASUREMENT CAPABILITY 

 
The concept of a calibration and measurement capability, CMC, is thoroughly investigated in 

the paper on calibration and measurement capabilities issued by the joint BIPM/ILAC Working 

Group 7 September 2007. This paper is included in the ILAC policy for uncertainty in calibration 

as an annex and the policy is the basis for a harmonised approach to the CMC among 

accredited laboratories around the world [ref.5]. 

 

The methods for evaluation of uncertainty outlined in this document should be used when 

accredited laboratories establish their CMC. 
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APPENDIX B 

GLOSSARY OF SOME RELEVANT TERMS 

 
B1 arithmetic mean ([ref.1] Section C.2.19)  

Average; The sum of values divided by the number of values. 

 

B2 calibration and measurement capability  

 The calibration and measurement capability (CMC) is expressed in terms of: 

1. Measurand or reference material; 

2. Calibration/measurement method/procedure and/or type of instrument/material 

to be calibrated/measured; 

3. Measurement range and additional parameters where applicable, e.g., 

frequency of applied voltage; 

4. Uncertainty of measurement. 

For a complete explanation see ref.5. 

 

B3 correlation coefficient (from [ref. 1] Section C.3.6)  

The correlation coefficient is a measure of the relative mutual dependence of two 

variables, equal to the ratio of their covariances to the positive square root of the 

product of their variances. For a more elaborated description see ref.1. 

 

B4 covariance (from [ref. 1] Section C.3.4)  

The measure of the mutual dependence of two random variables, equal to the 

expectation of the product of the deviations of two random variables from their 

respective expectations. The complete definition can be found in ref.1. 

 

B5 coverage factor ([ref. 3] term 2.38)  

Number larger than one by which a combined standard measurement uncertainty is 

multiplied to obtain an expanded measurement uncertainty. 

 

B6 coverage probability ([ref. 3] term 2.37)  

Probability that the set of true quantity values of a measurand is contained within a 

specified coverage interval.  

Note: The term “true value” (see Appendix D) is not used in this Guide for the reasons 

given in D.3.5 of the GUM; the terms “value of a measurand” (or of a quantity) and 

“true value of a measurand” (or of a quantity) are viewed as equivalent. (GUM 3.1.1) 

See also ref.6 (JCGM 104:2009) chapter 1. 

 

B7 experimental standard deviation ([ref. 1] section 4.2.2)  

The positive square root of the experimental variance. 

 

B8 expanded (measurement) uncertainty ([ref. 3] term 2.35)  

Product of a combined standard measurement uncertainty and a factor larger than 

the number one. 

 

B9 experimental variance (from [ref. 1] Section 4.2.2)  

The quantity that characterises the dispersion of the results of a series of n 

observations of the same measurand given by equation (3.2) in the text. 
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B10 input estimate (from [ref. 1] Section 4.1.4 and C2.26)  

The estimate of an input quantity used in the evaluation of the result of a 

measurement. 

 

B11 input quantity (from [ref. 1] Section 4.1.2)  

A quantity on which the measurand depends, taken into account in the process of 

evaluating the result of a measurement. 

 

B12 measurand ([ref. 3] term 2.3) 

Quantity intended to be measured. 

 

B13 measurement uncertainty, uncertainty of measurement, uncertainty ([ref.3] Section 

2.26) 

Non-negative parameter characterizing the dispersion of the quantity values being 

attributed to a measurand, based on the information used. 

 

B14 output estimate (from [ref. 1] Section 4.1.4 and C2.26)    

The result of a measurement calculated from the input estimates by the model 

function. 

 

B15 output quantity (from [ref. 1] Section 4.1.4)  

The quantity that represents the measurand in the evaluation of a measurement 

result. 

 

B16 pooled estimate of variance (from [ref. 1] Section 4.2.4)  

An estimate of the experimental variance obtained from long series of observations 

of the same measurand in well-characterised measurements under statistical control. 

 

B17 probability distribution ([ref. 1] Section C.2.3)  

A function giving the probability that a random variable takes any given value or belongs 

to a given set of values. 

 

B18 random variable ([ref. 1] Section C.2.2)  

A variable that may take any of the values of a specified set of values and with which 

is associated a probability distribution. 

 

B19 relative standard uncertainty of measurement ([ref. 3] Section 2.32) 

Standard measurement uncertainty divided by the absolute value of the measured 

quantity value. 

 

B20 sensitivity coefficient associated with an input estimate (from [ref.  1] 

Section 5.1.3)  

The differential change in the output estimate generated by a differential change in 

an input estimate divided by the change in that input estimate. 

 

B21 standard deviation ([ref. 1] Section C.2.12)  

The positive square root of the variance. 
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B22 standard measurement uncertainty ([ref. 3] term 2.30)  

The measurement uncertainty expressed as a standard deviation. 

 

B23 Type A evaluation of measurement uncertainty ([ref. 3] Section 2.28) 

Estimation of a component of measurement uncertainty by a statistical analysis of 

measured quantity values obtained under defined measurement conditions. 

 

B24 Type B evaluation of measurement uncertainty ([ref. 3] term 2.29)  

Estimation of a component of measurement uncertainty determined by means other 

than a Type A evaluation of measurement uncertainty. 

 

B25 uncertainty budget ([ref. 3] Section 2.33)  

Statement of a measurement uncertainty, of the components of that measurement 

uncertainty, and of their calculation and combination. 

 

B26 variance (from [ref. 1] Section C.2.11)  

The expectation of the square of the centred random variable.  
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APPENDIX C 

SOURCES OF UNCERTAINTY OF MEASUREMENT 

 

C1 The uncertainty of the result of a measurement reflects the lack of complete 
knowledge of the value of the measurand. Complete knowledge requires an infinite 
amount of information. Phenomena that contribute to the uncertainty and thus to the 
fact that the result of a measurement cannot be characterised by a unique value, are 
called sources of uncertainty. In practice, there are many possible sources of 
uncertainty in a measurement [ref. 1], including:  

(a) incomplete definition of the measurand; 

(b) imperfect realisation of the definition of the measurand; 

(c) non-representative sampling — the sample measured may not represent the 
defined measurand; 

(d) inadequately known effects of environmental conditions or imperfect 
measurements of these; 

(e) personal bias in reading analogue instruments; 

(f) finite instrument resolution or discrimination threshold; 

(g) inexact values of measurement standards and reference materials; 

(h) inexact values of constants and other parameters obtained from external 
sources and used in the data-reduction algorithm; 

(i) approximations and assumptions incorporated in the measurement method and 
procedure; 

(j) variations in repeated observations of the measurand under apparently identical 
conditions. 

 

C2 These sources are not necessarily independent. Some of the sources (a) to (i) may 
contribute to (j). 

 

C3 Most examples in Supplements 1 and 2 show the handling of uncertainty contributions 
(g), typically the value and uncertainty from reference standards, (b), the changes in 
the value of the reference since calibration e.g., due to drift or instrument 
specifications, (d) unknowns with respect to environmental influence factors and (j) 
variability in the readings or partial results obtained. 



EA-4/02 • Evaluation of the Uncertainty of Measurement in calibration 

4th April 2022_rev03  Page 20 of 78 

APPENDIX D 
CORRELATED INPUT QUANTITIES 

 

D1 If two input quantities Xi and Xk are known to be correlated— i.e., if they are dependent 

on each other in one way or another — the covariance associated with the two 

estimates xi and xk 

u x x u x u x r x x i ki k i k i k( , ) ( ) ( ) ( , ) ( )=   (D.1)  

has to be considered as an additional contribution to the uncertainty. The degree of 

correlation is characterised by the correlation coefficient r(xi, xk) (where i  k and 

r 1). 

 

D2 In the case of n independent pairs of simultaneously repeated observations of two 

quantities P and Q the covariance associated with the arithmetic means p  and q  is 

given by 
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and by substitution of s from equation (D.2) for u(xi, xk) in equation (D.1), r can be 

calculated from equation (D.1).  

 

D3 For influence quantities correlation can be based on experience. When there is 

correlation, equation (4.1) must be replaced by 
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where ci and ck are the sensitivity coefficients defined by equation (4.3) or 
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with the contributions ui(y) to the standard uncertainty of the output estimate y 

resulting from the standard uncertainty of the input estimate xi given by equation (4.2). 

It should be noted that the second summation of terms in equation (D.3) or (D.4) may 

be negative in sign.  

 

D4 In practice, input quantities are often correlated because the same physical reference 

standard, measuring instrument, reference datum, or even measurement method 

having a significant uncertainty is used in the evaluation of these quantities. Without 

loss of generality, suppose that two input quantities X1 and X2 estimated by x1 and x2 

depend on the set of independent variables Q
l
 (l = 1,2,,L)  

X g Q Q Q

X g Q Q Q
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L

1 1 1 2
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=
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 (D.5)  

although some of these variables may not necessarily appear in both functions. The 

estimates x1 and x2 of the input quantities will be correlated to some extent, even if 

the estimates q
l
 (l = 1,2,…,L) are uncorrelated. In that case the covariance u(x1, x2) 

associated with the estimates x1 and x2 is given by 

 u x x c c u ql l l
l

L
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2
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=
=

  (D.6)  
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where c l1
 and c l2

 are the sensitivity coefficients derived from the functions g1 and g2 

in analogy to equation (4.3). Because only those terms contribute to the sum for which 

the sensitivity coefficients do not vanish, the covariance is zero if no variable is 

common to functions g1 and g2. The correlation coefficient r(x1, x2) associated with the 

estimates x1 and x2 is determined from equation (D.6) together with equation (D.1).  

 

D5 The following example demonstrates correlations which exist between values 

attributed to two artefact standards that are calibrated against the same reference 

standard.  

 

Measurement Problem 

Two standards characterized by quantities X1 and X2 are compared with a reference 

standard characterized by the quantity QS.by means of a measuring system capable 

of determining a difference z in their values with an associated standard uncertainty 

u(z). The value qS of the reference standard is known with standard uncertainty u(qS). 

 

Mathematical Model 

The estimates x1 and x2 depend on the value qS of the reference standard and the 

observed differences z1 and z2 according to the relations 

x q z

x q z

1 1
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= −

= −
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S

 (D.7)  

Standard uncertainties and covariances 

Suppose the quantities X1, X2 and QS can be assumed to be independent. The 

standard uncertainties are calculated from equation (4.4) and the covariance 

associated with the estimates x1 and x2 is calculated from equation (D.6), assuming 

that u(z1) = u(z2) = u(z), 
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The correlation coefficient deduced from these results is 

r x x
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 (D.9)  

Its value ranges from 0 to +1 depending on the ratio of the standard uncertainties 

u(qS) and u(z). 

 

D6 The case described by equation (D.5) is an occasion where the inclusion of correlation 

in the evaluation of the standard uncertainty of the measurand can be avoided by a 

careful choice of variable in choice of the model function. Introducing directly the 

independent variables Ql
 by replacing the original variables X1 and X2 in the model 

function f in accordance with the transformation equations (D.5) gives a new model 

function that does not contain the correlated variables X1 and X2 any longer.  

 

D7 There are cases however, where correlation between two input quantities X1 and X2 

cannot be avoided, e.g., using the same measuring instrument or the same reference 
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standard when determining the input estimates x1 and x2 but where transformation 

equations to new independent variables are not available.  

If furthermore the degree of correlation is not exactly known it may be useful to assess 

the maximum influence this correlation can have by an upper bound estimate of the 

standard uncertainty of the measurand which in the case that other correlations have 

not to be taken into account takes the form 

( )u y u y u y u yr

2

1 2

2
2( ) ( ) ( ) ( ) + +  (D.10)  

with ur(y) being the contribution to the standard uncertainty of all the remaining input 

quantities assumed to be uncorrelated. 

 

Note: Equation (D.10) is easily generalised to cases of one or several groups with two 

or more correlated input quantities. In this case a respective worst-case sum must be 

introduced into equation (D.10) for each group of correlated quantities. 
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APPENDIX E 
COVERAGE FACTORS DERIVED FROM EFFECTIVE DEGREES OF FREEDOM 

 
E1 To determine the value of a coverage factor k corresponding to a specified coverage 

probability requires that the reliability of the standard uncertainty u(y) of the output 

estimate y  is taken into account. That means taking into account how well u(y) 

estimates the standard deviation associated with the result of the measurement. For 

an estimate of the standard deviation of a normal distribution, the degrees of freedom 

of this estimate, which depends on the size of the sample on which it is based, is a 

measure of the reliability. Similarly, a suitable measure of the reliability of the standard 

uncertainty associated with an output estimate is its effective degrees of freedom eff 

, which is approximated by an appropriate combination of the effective degrees of 

freedom of its different uncertainty contributions ui(y). 

 

E2 The procedure for calculating an appropriate coverage factor k when the conditions 

of the Central Limit Theorem are met comprises the following three steps:  

(a) Obtain the standard uncertainty associated with the output estimate according to 

the step-by-step procedure given in Section 7.  

(b) Determine the effective degrees of freedom eff of the standard uncertainty u(y) 

associated with the output estimate y from the Welch-Satterthwaite formula. 





eff
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=
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u y

u yi

ii

N

4

4

1

 , (E.1)  

where the ui(y) (i =1,2,,N), defined in equation (4.2), are the contributions to the 

standard uncertainty associated with the output estimate y resulting from the standard 

uncertainty associated with the input estimate xi which are assumed to be mutually 

statistically independent, and i is the effective degrees of freedom of the standard 

uncertainty contribution ui(y). 

 

For a standard uncertainty u(q) obtained from a Type A evaluation as discussed in 

sub-section 3.1, the degrees of freedom are given by i = n-1. It is more problematic 

to associate degrees of freedom with a standard uncertainty u(xi) obtained from a 

Type B evaluation. However, it is common practice to carry out such evaluations in a 

manner that ensures that any underestimation is avoided. If, for example, lower and 

upper limits a– and a+ are set, they are usually chosen in such a way that the 

probability of the quantity in question lying outside these limits is in fact extremely 

small. Under the assumption that this practice is followed, the degrees of freedom of 

the standard uncertainty u(xi) obtained from a Type B evaluation may be taken to be 

infinite. 
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(c) Obtain the coverage factor k from the table of values given as Table E.1 of this 
Appendix. This table is based on a t-distribution evaluated for a coverage 

probability of 95,45%. If eff is not an integer, which will usually be the case, 

truncate eff to the next lower integer. 

 
Table E.1: Coverage factors k for different effective degrees of 

freedom eff for approximately 95 % coverage (95.45 %) 
 

νeff 1 2 3 4 5 6 7 8 9 10 

k 13,97 4,53 3,31 2,87 2,65 2,52 2,43 2,37 2,32 2,28 

 

νeff 11 12 13 14 15 16 17 18 19 20 

k 2,25 2,23 2,21 2,20 2,18 2,17 2,16 2,15 2,14 2,13 

 

νeff 25 30 35 40 45 50 ∞ 

k 2,11 2,09 2,07 2,06 2,06 2,05 2,00 
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APPENDIX F 
CONFORMITY WITH A SPECIFICATION 

 
F1 In some circumstances the acceptability of calibration results is decided by comparing 

them against a specification, usually expressed in terms of a tolerance interval or 

limits. In these circumstances a Decision Rule is employed which dictates how the 

measurement uncertainty shall be taken into account when reaching such a 

conformity decision [ref. 7]. 

 

F2 For limit-based specifications, the area of the Probability Density Function (PDF) for 

a measurand 𝑌 that falls within the tolerance interval 𝐶 represents the proportion of 

conforming values of the measurand that could be responsible for the measured value 

𝑦𝑚. This is the conformance probability 𝑝𝑐  

 

F3 For example, assuming normal distribution, in the figure F1 the unshaded region of 

the PDF is within the tolerance interval and represents conforming values of the 

measurand that can be associated with the measurement result.  

  

Figure F1: A measurement result within a tolerance interval that is defined by a single upper limit 

 Tu = upper limit; TL = lower limit; um = uncertainty; Um = expanded uncertainty; ym = measured 
value 

  

F4 The shaded region in the figure represents non-conforming values of the measurand 

that can similarly also be attributed to the measurement result. If it was decided to 

Accept the result, based upon the observation that the measured value 𝑦𝑚 is inside 

the tolerance interval, the area of the shaded region corresponds to the Probability of 

False Acceptance (PFA). Similar arguments are used to define the Probability of False 

Rejection (PFR) when a decision is made to reject a result, based upon an 

observation that the measured value 𝑦𝑚 falls outside a tolerance interval. 
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F5 Decision Rules are commonly expressed in terms of conformance probability, in 

terms of the risk associated with an incorrect decision (PFA and PFR) or in other 

terms that relate the uncertainty to the size of the tolerance interval. They can have 

multiple outcomes, such as {Pass, Conditional Pass, Conditional Fail, Fail} or {Pass, 

Uncertain, Fail} or a simple binary {Pass, Fail} outcome, depending on how the 

Decision Rule dictates that uncertainty should be taken into account.  

 

F6 Examples of such rules and associated conformity decisions can be found in 

reference documents.  
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S1 INTRODUCTION 

 

S1.1 The following examples are chosen to demonstrate the method of evaluating the 

uncertainty of measurement. More typical and representative examples based on 

appropriate models have to be developed by special working groups in the different 

areas. Nevertheless, the examples presented here provide general guidance on how 

to proceed.  

 

S1.2 The examples are based on drafts prepared by EA Expert Groups. These drafts have 

been simplified and harmonised to make them transparent to laboratory staff in all 

fields of calibration. It is thus hoped that this set of examples will contribute to a better 

understanding of the details of setting up the model of evaluation (the measurement 

model) and to the harmonisation of the process of evaluating the uncertainty of 

measurement, independent of the field of calibration.  

 

S1.3 The contributions and values given in the examples are not intended to imply 

mandatory or preferred requirements. Laboratories should determine the uncertainty 

contributions on the basis of the model function they use in the evaluation of the 

particular calibration they perform and report the evaluated uncertainty of 

measurement on the calibration certificate they issue. In the examples given, the 

conditions stated in section 5 for the use of the standard coverage factor k = 2 are 

generally fulfilled.  

 

S1.4 The presentation of the examples follows, in accordance with the step-by-step 

procedure of section 6 of EA-4/02, a common scheme containing:  

• a short descriptive title, 

• a general description of the process of measurement,  

• the model of evaluation with a list of symbols used,  

• an extended listing of input data with short descriptions of how they have been 

obtained,  

• the list of observations and the evaluation of the statistical parameters,  

• an uncertainty budget in table form,  

• the expanded uncertainty of measurement,  

• the reported complete result of measurement.  

 

S1.5 This first supplement to EA-4/02 is intended to be followed by others containing further 

worked-out examples on the evaluation of uncertainty of measurement in connection 

with the calibration of instruments. Examples may also be found in EURAMET 

Calibration Guides dealing with the calibration of specific types of measurement 

instruments. 



EA-4/02 • Evaluation of the Uncertainty of Measurement in calibration 

4th April 2022_rev03  Page 29 of 78 

S2 CALIBRATION OF A WEIGHT OF NOMINAL VALUE 10 KG 

 

S2.1 The calibration of a weight of nominal value 10 kg of OIML class M1 is carried out by 

comparison to a reference standard (OIML class F2) of the same nominal value using 

a mass comparator whose performance characteristics have previously been 

determined.  

 

S2.2 The unknown conventional mass mX is obtained from:  

mX = mS + mD + m + mC + B (S2.1) 

where:  

mS - conventional mass of the standard,  

mD - drift of value of the standard since its last calibration,  

m - observed difference in mass between the unknown mass and the standard,  

mC - correction for eccentricity and magnetic effects,  

B - correction for air buoyancy.  

 

S2.3 Reference standard (mS): The calibration certificate for the reference standard gives 

a value of 10 000,005 g with an associated expanded uncertainty of 45 mg (coverage 

factor k = 2).  

 

S2.4 Drift of the value of the standard (mD): The drift of the value of the reference 

standard is estimated from previous calibrations to be zero within ±15 mg.  

 

S2.5 Comparator (m, mC): A previous evaluation of the repeatability of the mass 

difference between two weights of the same nominal value gives a pooled estimate 

of standard deviation of 25 mg. No correction is applied for the comparator, whereas 

variations due to eccentricity and magnetic effects are estimated to have rectangular 

limits of 10 mg.  

 

S2.6 Air buoyancy (B): No correction is made for the effects of air buoyancy, the limits 

of deviation are estimated to be ±110-6 of the nominal value assuming that the 

weights are of similar material.  

 

S2.7 Correlation: None of the input quantities is considered to be correlated to any 

significant extent.  
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S2.8 Measurements: Three sets of observations of the difference in mass between the 

unknown mass and the standard are obtained using the substitution method and the 

substitution scheme ABBA ABBA ABBA: 
Note:  The substitution scheme ABBA means that, for each set of observations, the standard mass is 

first measured, then the unknown mass is measured twice, and finally the standard mass is measured. 

 

no conventional mass  Reading (g)  observed difference (g) 

1 standard  +0,010   

 unknown  +0,020   

 unknown  +0,025   

 standard  +0,015  +0,010 

2 standard  +0,025   

 unknown  +0,050   

 unknown  +0,055   

 standard  +0,020  +0,030 

3 standard  +0,025   

 unknown  +0,045   

 unknown  +0,040   

 standard  +0,020  +0,020 

 

arithmetic mean:     m  = 20 mg 

pooled estimate of standard deviation:  sp(m) = 25 mg  
(obtained from prior evaluation)  

standard uncertainty:    u m s m( ) ( ) , = = =
25

3
14 4

mg
mg  

 
S2.9 Uncertainty budget (mX): 

 

quantity 
 

Xi 

estimate 
 

xi 

standard 
uncertainty 

u(xi) 

probability 
distribution 

 

sensitivity 
coefficient 

ci 

uncertainty 
contribution 

ui(y) 

mS 10 000,005 g 22,5 mg normal 1,0 22,5 mg 

mD 0,000 g 8,66 mg rectangular 1,0 8,66 mg 

m 0,020 g 14,4 mg normal 1,0 14,4 mg 

mC 0,000 g 5,77 mg rectangular 1,0 5,77 mg 

B 0,000 g 5,77 mg rectangular 1,0 5,77 mg 

mX 10 000,025 g    29,2 mg 

 
S2.10 Expanded uncertainty 

 

U = k  u(mX) = 2  29,2 mg   58 mg 
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Although the determination of ẟm is based on only three repeated readings, the 

evaluated uncertainty relies on a previously determined pooled estimate of the 

standard deviation. Thus the effective degrees of freedom is large, and together with 

the fact that the dominant uncertainty contributor has a normal distribution, the 

standard coverage factor, k=2, can be used. 

 

S2.11 Reported result 

The measured mass of the nominal 10 kg weight is 10,000 025 kg ± 58 mg.  

The reported expanded uncertainty of measurement is stated as the standard 

uncertainty of measurement multiplied by the coverage factor k such that the 

coverage probability corresponds to approximately 95 %. 

 

S3 CALIBRATION OF A NOMINAL 10 KΩ STANDARD RESISTOR 

 

S3.1 The resistance of a four-terminal standard resistor is determined by direct substitution 

using a long-scale digital multimeter (7½ digit DMM) on its resistance range, and a 

calibrated four-terminal standard resistor of the same nominal value as the item to be 

calibrated as reference standard. The resistors are immersed in a well stirred oil bath 

operating at a temperature of 23 C monitored by a centrally placed mercury-in-glass 

thermometer. The resistors are allowed to stabilise before the measurement. The 

four-terminal connectors of each resistor are connected in turn to the terminals of the 

DMM. It is determined that the measuring current of 100 A on the 10 k range of the 

DMM is sufficiently low not to cause any appreciable self-heating of the resistors. The 

measurement procedure used also ensures that the effects of external leakage 

resistances on the result of measurement can be considered to be insignificant. 

 

S3.2 The resistance RX of the unknown resistor is obtained from the relationship: 

R R R R r r RT TX S D S C X( )= + + −    (S3.1) 

where:  

RS - resistance of the reference,  

RD - drift of the resistance of the reference since its last calibration,  

RTS - temperature related resistance variation of the reference,  

r = RiX/RiS - ratio of the indicated resistance (index i means ‘indicated’) for the 

unknown and reference resistors, 

rC - correction factor for parasitic voltages and instrument resolution  

RTX - temperature-related resistance variation of the unknown resistor.  

 

S3.3 Reference standard (RS): The calibration certificate for the reference standard gives 

a resistance value of 10 000,053   5 m (coverage factor k = 2) at the specified 

reference temperature of 23 C.  
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S3.4 Drift of the value of the standard (RD): The drift of the resistance of the reference 

resistor since its last calibration is estimated from its calibration history to be +20 m 

with deviations within 10 m.  

 

S3.5 Temperature corrections (RTS, RTX): The temperature of the oil bath is monitored 

using a calibrated thermometer to be 23,00 C. Taking into account the metrological 

characteristics of the thermometer used and of gradients of temperature within the oil 

bath, the temperature of the resistors is estimated to coincide with the monitored 

temperature within 0,055 K. Thus the known value 510-6 K-1 of the temperature 

coefficient (TC) of the reference resistor gives limits 2,75 m for the deviation from 

its resistance value according to calibration, due to a possible deviation from the 

operating temperature. From the manufacturer’s literature, the TC of the unknown 

resistor is estimated not to exceed 1,010-5 K-1, thus the resistance variation of the 

unknown resistor due to a temperature variation is estimated to be within ±5,5 m.  

 

S3.6 Resistance measurements (rC): Since the same DMM is used to observe both RiX 

and RiS the uncertainty contributions are correlated but the effect is to reduce the 

uncertainty and it is only necessary to consider the relative difference in the resistance 

readings due to systematic effects such as parasitic voltages and instrument 

resolution (see the mathematical note in paragraph S3.12), which are estimated to 

have limits of ±0,510-6 for each reading. The distribution resulting for the ratio rC is 

triangular with expectation 1,000 000 0 and limits ±1,010-6. 

 

S3.7 Correlation: None of the input quantities is considered to be correlated to any 

significant extent.  

 

S3.8 Measurements (r): Five observations are made to record the ratio r: 

 

No. observed ratio 

1 1,000 010 4 

2 1,000 010 7 

3 1,000 010 6 

4 1,000 010 3 

5 1,000 010 5 

 
arithmetic mean:   r = 1 000 010 5,  

experimental standard deviation:  s(r) = 0,158  10-6 

standard uncertainty:   u r s r( ) ( )= =


= 
−

−0158 10

5
0 0707 10

6
6,

,  
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S3.9 Uncertainty budget (RX):  
 

quantity 
 
Xi 

estimate 
 
xi 

standard 
uncertainty 
u(xi) 

probability 
distribution 

sensitivity 
coefficient 
ci 

uncertainty 
contribution 
ui(y) 

RS 10 000,053  2,5 m normal 1,0 2,5 m 

RD 0,020  5,8 m rectangular 1,0 5,8 m 

RTS 0,000  1,6 m rectangular 1,0 1,6 m 

RTX 0,000  3,2 m rectangular 1,0 3,2 m 

rC 1,000 000 0 0,4110-6 triangular 10 000  4,1 m 

r 1,000 010 5 0,0710-6 normal 10 000  0,7 m 

RX 10 000,178     8,33 m 

 
S3.10 Expanded uncertainty:  

U k u R=  =  ( )X 2 8 33 17, m m   

 

S3.11 Reported result: The measured value of the nominal 10 k resistor, at a measuring 

temperature of 23,00 C and a measuring current of 100 A, is 

(10 000,178 ± 0,017) . 

The reported expanded uncertainty of measurement is stated as the standard 

uncertainty of measurement multiplied by the coverage factor k such that the 

coverage probability corresponds to approximately 95 %.  

 

S3.12 Mathematical note on the standard uncertainty of measurement of the ratio of 

indicated resistance values: The unknown and the reference resistors have nearly 

the same resistance. Within the usual linear approximation in the deviations, the 

values causing the DMM indications RiX and RiS are given by  

 

R R
R

R

R R
R

R

X iX
X

S iS
S

( )

( )

'
'

'
'

= +

= +

1

1




 (S3.2) 

with R being the nominal value of the resistors and RX'  and RS'  the unknown 

deviations. The resistance ratio deduced from these expressions is  

R

R
rrX

S

C

'

'
=  (S3.3) 

with the ratio of the indicated resistance for the unknown and the reference resistor  

r
R

R
=

iX

iS

 (S3.4) 

and the correction factor (linear approximation in the deviations) 

r
R R

R
C

X S= +
−

1
 ' '

 (S3.5) 
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Because of the fact that the difference of the deviations enters into equation (S3.5), 

correlated contributions of systematic effects resulting from the internal scale of the 

DMM do not influence the result. The standard uncertainty of the correction factor is 

determined only by uncorrelated deviations resulting from the parasitic effects and the 

resolution of the DMM. Assuming that u R u R u R( ) ( ) ( )X S  ' ' '= = , it is given by the 

expression  

u r
u R

R

2
2

2
2( )

( )
C =

 '
 (S3.6) 

 

S4 CALIBRATION OF A GAUGE BLOCK OF NOMINAL LENGTH 50 MM 

 

S4.1 The calibration of the grade 0 gauge block (ISO 3650) of 50 mm nominal length is 

carried out by comparison using a comparator and a calibrated gauge block of the 

same nominal length and the same material as reference standard. The difference in 

central length is determined in vertical position of the two gauge blocks using two 

length indicators contacting the upper and lower measuring faces. The actual length 

lX'  of the gauge block to be calibrated is related to the actual length lS'  of the 

reference standard by the equation 

l l lX S' '= +  (S4.1) 

with l being the measured length difference. lX'  and lS '  are the lengths of the gauge 

blocks under measurement conditions, in particular at a temperature which, on 

account of the uncertainty in the measurement of laboratory temperature, may not be 

identical with the reference temperature for length measurements.  

S4.2 The length lX of the unknown gauge block at the reference temperature is obtained 

from the relationship:  

l l l l l L t t lX S D C V= + + + −  +  −      ( )   (S4.2) 

where:  

lS - length of the reference gauge block at the reference 

temperature t0 = 20 °C according to its calibration 

certificate; 

lD - change of the length of the reference gauge block since its 

last calibration due to drift; 

l - observed difference in length between the unknown and 

the reference gauge block; 

lC - correction for non-linearity and offset of the comparator; 

L - nominal length of the gauge blocks considered; 

  = +( )X S / 2  - average of the thermal expansion coefficients of the 

unknown and reference gauge blocks; 

t = (tX - tS) - temperature difference between the unknown and 

reference gauge blocks; 
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 = (X – S) - difference in the thermal expansion coefficients between 

the unknown and the reference gauge blocks; 

t t t t= + −( ) 0X S / 2  - deviation of the average temperature of the unknown and 

the reference gauge blocks from the reference 

temperature; 

lV - correction for non-central contacting of the measuring 

faces of the unknown gauge block.  

 

S4.3 Reference standard (lS): The length of the reference gauge block together with the 

associated expanded uncertainty of measurement is given in the calibration certificate 

of a set of gauge blocks as 50,000 02 mm ± 30 nm (coverage factor k = 2). 

 

S4.4 Drift of the standard (lD): The temporal drift of the length of the reference gauge 

block is estimated from previous calibrations to be zero with limits ±30 nm. General 

experience with gauge blocks of this type suggests that zero drift is most probable 

and that a triangular probability distribution can be assumed.  

 

S4.5 Comparator (lC): The comparator has been verified to meet the specifications stated 

in EURAMET cg-2 Version 2.0 (03/2011) (previously EAL-G21:1996). From this, it 

can be ascertained that for length differences D up to ±10 m corrections to the 

indicated length difference are within the limits  (30 nm +0,02xD), where D has unit 

μm. Taking into account the tolerances of the grade 0 gauge block to be calibrated 

and the grade K reference gauge block, the maximum length difference will be within 

±1 m leading to limits of ±32 nm for non-linearity and offset corrections of the 

comparator used.  

 

S4.6 Temperature corrections ( , t, ,  t ): Before calibration, care is taken to 

ensure that the gauge blocks assume ambient temperature of the measuring room. 

The remaining difference in temperature between the standard and the gauge block 

to be calibrated is estimated to be within ±0,05 K. Based on the calibration certificate 

of the reference gauge block and the manufacturer’s data for the gauge block to be 

calibrated the linear thermal expansion coefficient of the steel gauge blocks is 

assumed to be within the interval (11,5 ± 1,0)10-6 C-1. Combining the two 

rectangular distributions the difference in linear thermal expansion coefficient is 

triangularly distributed within the limits ±210-6 C-1. The deviation of the mean 

temperature of measurement from the reference temperature t0 = 20 °C is estimated 

to be within ±0,5 C. The best estimates of the difference in linear expansion 

coefficients and the deviations of the mean temperature from the reference 

temperature are zero. Therefore second order terms have to be taken into account in 

the evaluation of their uncertainty contribution resulting in the product of standard 

uncertainties associated with the factors of the product term    t  in equation 

(S4.2) (see the mathematical note in paragraph S4.13, eq. (S4.5)). The final standard 

uncertainty is u t( )  =  −0 236 10 6, . 
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S4.7 Variation in length (lV): For gauge blocks of grade 0 the variation in length 

determined from measurements at the centre and the four corners has to be within 

±0,10 m (ISO 3650:1998). Assuming that this variation occurs on the measuring 

faces along the short edge of length 9 mm and that the central length is measured 

inside a circle of radius 0,5 mm, the correction due to central misalignment of the 

contacting point is estimated to be within ±6,7 nm.  

 

S4.8 Correlation: None of the input quantities is considered to be correlated to any 

significant extent.  

 

S4.9 Measurements (l): The following observations are made for the difference between 

the unknown gauge block and the reference standard, the comparator being reset 

using the reference standard before each reading.  

 

obs. 

no. 

obs. value 

1 -100 nm 

2 -95 nm 

3 -80 nm 

4 -95 nm 

5 -100 nm 

arithmetic mean:      l = −94 nm  

pooled estimate of standard deviation:  s lp( ) =12 nm  

(obtained from prior evaluation)  

standard uncertainty:    u l s l( ) ( ) = = =
12

5
5 37

nm
nm,  

The pooled estimate of the standard deviation has been taken from the tests made 

to confirm compliance of the comparator used with the requirements of EURAMET 

cg-2 Version 2.0 (03/2011) (previously EAL-G21:1996). 

 

S4.10 Uncertainty budget (lX): 
 

quantity 
 

Xi 

estimate 
 

xi 

standard 
uncertainty 

u(xi) 

probability 
distribution 

sensitivity 
coefficient 

ci 

uncertainty 
contribution 

ui(y) 

lS 50,000 020 mm 15 nm normal 1,0 15,0 nm 

lD 0 mm 12,2 nm triangular 1,0 12,2 nm 

l -0,000 094 mm 5,37 nm normal 1,0 5,37 nm 

lC 0 mm 18,5 nm rectangular 1,0 18,5 nm 

t 0 C 0,0289 C rectangular -575 nmC-1 -16,6 nm 

  t  0 0,23610-6 special -50 mm -11,8 nm 

lV 0 mm 3,87 nm rectangular -1,0 -3,87 nm 

lX 49,999 926 mm    34.3 nm 
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S4.11 Expanded uncertainty 

X( ) 2 34.3 nm 69 nmU k u l=  =    

 

S4.12 Reported result 

The measured value of the nominal 50 mm gauge block is 49,999 926 mm ±69 nm. 

The reported expanded uncertainty of measurement is stated as the standard 

uncertainty of measurement multiplied by the coverage factor k such that the 

coverage probability corresponds to approximately 95 %. 

 

S4.13 Mathematical note on the standard uncertainty of measurement of the product 

of two quantities with zero expectation:  

If a product of two quantities is considered, the usual method of evaluation of 

uncertainty contributions based on the linearisation of the model function has to be 

modified if one or both of the expectations of the factors in the product are zero. If the 

factors in the product are statistically independent with non-zero expectations, the 

square of the relative standard uncertainty of measurement (relative variance) 

associated with the product can be expressed without any linearisation by the squares 

of the relative standard uncertainties associated with the estimates of the factors: 

w x x w x w x w x w x2

1 2

2

1

2

2

2

1

2

2( ) ( ) ( ) ( ) ( ) = + +   (S4.2) 

Using the definition of the relative standard uncertainty of measurement this 

expression is easily transformed into the general relation 

u x x x u x x u x u x u x2

1 2 2

2 2

1 1

2 2

2

2

1

2

2( ) ( ) ( ) ( ) ( ) = + +   (S4.3) 

If the standard uncertainties u(x1) and u(x2) associated with the expectations x1 and 

x2 are much smaller than the moduli of the respective expectation values the third 

term on the right side may be neglected. The resulting equation represents the case 

described by the usual method based on the linearisation of the model function. 

If, however, one of the moduli of the expectation values, for example x2, is much 

smaller than the standard uncertainty u(x2) associated with this expectation or even 

zero, the product term involving this expectation may be neglected on the right side 

of equation (S4.3), but not the third term. The resulting equation is 

u x x x u x u x u x2

1 2 1

2 2

2

2

1

2

2( ) ( ) ( ) ( )  +   (S4.4) 

If both moduli of the expectation values are much smaller than their associated 

standard uncertainties or even zero, only the third term in equation (S4.3) gives a 

significant contribution: 

u x x u x u x2

1 2

2

1

2

2( ) ( ) ( )    (S4.5) 

 

Another example of a contribution which not always can be subject to reasonable 

linearisation, is Y = X2. If X is normally distributed with mean m and variance s2, then 

the expectation value of Y is m2+s2 and the standard uncertainty is  

sqrt[2 ( 2 m2 s2 + s4)]. For example, if the X has mean m = 0, Y = X2 should be assigned 

the value y = s2 with u(y) = √2 s2 

S5 CALIBRATION OF A TYPE N THERMOCOUPLE AT 1000 °C 

 

S5.1 A type N thermocouple is calibrated by comparison with two reference thermocouples 

of type R in a horizontal furnace at a temperature of 1000 °C. The emfs generated by 
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the thermocouples are measured using a digital voltmeter through a 

selector/reversing switch. All thermocouples have their reference junctions at 0 °C. 

The thermocouple to be calibrated is connected to the reference point using 

compensating cables. Temperature values are give in the t90 temperature scale. 

 

S5.2 The temperature tX of the hot junction of the thermocouple to be calibrated is 

t t V V V V
t

C
t t

t V C V C V C V
C

C
t t t

X S iS iS1 iS2 R
S

S

D F

S iS S iS1 S iS2 S R
S

S

S D F

( )

( )

= + + + − + +

 +  +  +  − + +

  


 

     

0

0

0

0

 (S5.1) 

 

S5.3 The voltage VX across the thermocouple wires with the cold junction at 0 °C during 

calibration is  

V t V t
t

C

t

C

V V V V V
t

C

t

C

X X X

X

X

X

iX iX1 iX2 R LX

X

X

X

( ) ( ) + −

= + + + + + −

 

   
 

0

0

0

0

 (S5.2) 

where:  

tS(V) - temperature of the reference thermometer in terms of voltage 

with cold junction at 0 °C. The function is given in the calibration 

certificate; 

ViS, ViX - indication of the voltmeter; 

ViS1, ViX1 - voltage corrections obtained from the calibration of the 

voltmeter; 

ViS2, ViX2 - voltage corrections due to the limited resolution of the 

voltmeter; 

VR - voltage correction due to contact effects of the reversing switch; 

t0S, t0X - temperature corrections due to the deviation of the reference 

temperatures from 0 C; 

CS, CX - sensitivities of the thermocouples for voltage at the measuring 

temperature of 1000 °C; 

CS0, CX0 - sensitivities of the thermocouples for voltage at the reference 

temperature of 0 C; 

tD - change of the values of the reference thermometers since their 

last calibration due to drift; 

tF - temperature correction due to non-uniformity of the temperature 

of the furnace; 

t - temperature at which the thermocouple is to be calibrated 

(calibration point); 
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t = t - tX - deviation of the temperature of the calibration point from the 

temperature of the furnace; 

VLX - voltage correction due to the compensating cables. 

 

S5.4 The reported result is the output emf of the thermocouple at the temperature of its hot 

junction. Because the measurement process consists of two steps — determination 

of the temperature of the furnace and determination of emf of the thermocouple to be 

calibrated — the evaluation of the uncertainty of measurement is split in two parts.  

 

S5.5 Reference standards (tS(V)): The reference thermocouples are supplied with 

calibration certificates that relate the temperature at their hot junction with their cold 

junction at 0 °C to the voltage across their wires. The expanded uncertainty of 

measurement at 1000 °C is U = 0,3 °C (coverage factor k = 2). 

 

S5.6 Calibration of the voltmeter (ViS1, ViX1): The voltmeter has been calibrated. 

Corrections to the measured voltages are made to all results. The calibration 

certificate gives a constant expanded uncertainty of measurement for voltages 

smaller than 50 mV of U = 2,0 µV (coverage factor k = 2).  

 

S5.7 Resolution of the voltmeter (ViS2, ViX2): A 4½ digit microvoltmeter has been used 

in its 10 mV range resulting in resolution limits of ±0,5 V at each indication. 

 

S5.8 Parasitic voltages (VR): Residual parasitic offset voltages due to the switch 

contacts have been estimated to be zero within ±2 µV. 

 

S5.9 Reference temperatures (t0S, t0X): The temperature of the reference point of each 

thermocouple is known to be 0 °C within ±0,1 °C. 

 

S5.10 Voltage sensitivities (CS, CX, CS0, CX0): The voltage sensitivities of the 

thermocouples have been taken from reference tables:  

 1000 °C 0 °C 

reference thermocouple CS = 0,077 °C/µV CS0 = 0,189 °C/µV 

unknown thermocouple CX = 0,026 °C/µV CX0 = 0,039 °C/µV 

 

S5.11 Drift of the reference standard (tD): From previous calibrations the drift of the 

reference standards are estimated to be zero within the limits ±0,3 °C.  

 

S5.12 Temperature gradients (tF): The temperature gradients inside the furnace have 

been measured. At 1000 °C, deviations from non-uniformity of temperature in the 

region of measurement are within ±1 °C. 

S5.13 Compensating cables (VLX): The compensating cables have been investigated in 

the range  0 C to 40 °C. From this, the voltage differences between the cables and 

the thermocouple wires are estimated to be within ±5 µV.  
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S5.14 Measurements (ViS, tS(ViS), ViX): The indications of the voltmeter are recorded in the 

following operational procedure which gives four readings for every thermocouple and 

reduces the effects of temperature drift in the thermal source and of parasitic thermal 

voltages in the measuring circuit: 

1st cycle: 

1st standard, unknown thermocouple, 2nd standard, 

2nd standard, unknown thermocouple, 1st standard. 

Reversion of polarity. 

2nd cycle: 

1st standard, unknown thermocouple, 2nd standard, 

2nd standard, unknown thermocouple, 1st standard. 

 

S5.15 The procedure requires that the difference between the two reference standards must 

not exceed ±0,3 °C. If the difference is not within these limits the observations have 

to be repeated and/or the reasons for such a large difference have to be investigated. 

 

Thermocouple 1st reference Unknown 2nd 
reference 

Indicated voltage, corrected +10 500 µV +36 245 µV +10 503 µV 

 +10 503 µV +36 248 µV +10 503 µV 

 -10 503 µV -36 248 µV -10 505 µV 

 -10 504 µV -36 251 µV -10 505 µV 

Mean voltage 10 502,5 µV 36 248 µV 10 504 µV 

Temperature of the hot junction 10 00,4 °C  1000,6 °C 

Temperature of the furnace  1000,5 °C  

 
S5.16 From the four readings on each thermocouple given in the table above, the mean 

value of the voltages of each thermocouple is deduced. The voltage values of the 

reference thermocouples are converted into temperature values by means of the 

temperature-voltage relations stated in their calibration certificates. The observed 

temperature values are highly correlated (correlation factor nearly one). Therefore, by 

taking their mean value, they are combined to one observation only, which is the 

temperature of the furnace at the location of the thermocouple to be calibrated. In a 

similar way, one observation of the voltage of the thermocouple to be calibrated has 

been extracted. In order to evaluate the uncertainty of measurement associated with 

these observations, a series of ten measurements has been previously undertaken at 

the same temperature of operation. It gave a pooled estimate of standard deviation 

for the temperature of the furnace and the voltage of the thermocouple to be 

calibrated.  

 

The respective standard uncertainties of measurement of the observed quantities are:  
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pooled estimate of standard deviation:  sp(tS) = 0,10 °C  

standard uncertainty:    u(tS) = 
s tp S( )

1
 = 0,10 °C  

pooled estimate of standard deviation:  sp(ViX) = 1,6 µV  

standard uncertainty:    u(ViX) = 
s Vp iX( )

1
= 1,6 µV 

 

S5.17 Uncertainty budget (temperature tX of the furnace): 

 

quantity 
 

Xi 

estimate 
 

xi 

standard 
uncertainty 

u(xi) 

probability 
distribution 

sensitivity 
coefficient 

ci 

uncertainty 
contribution 

ui(y) 

tS 1000,5 °C 0,10 °C normal 1,0 0,10 °C 

ViS1 0 µV 1,00 µV normal 0,077 °C/µV 0,077 °C 

ViS2 0 µV 0,29 µV rectangular 0,077 °C/µV 0,022 °C 

VR 0 µV 1,15 µV rectangular 0,077 °C/µV 0,089 °C 

t0S 0 °C 0,058 °C rectangular -0,407 -0,023 °C 

tS 0 °C 0,15 °C normal 1,0 0,15 °C 

tD 0 °C 0,173 °C rectangular 1,0 0,173 °C 

tF 0 °C 0,577 °C rectangular 1,0 0,577 °C 

tX 1000,5 °C    0,641 °C 

 

S5.18 Uncertainty budget (emf VX of the thermocouple to be calibrated): 

The standard uncertainty of measurement associated with the temperature deviation 
of the calibration point from the temperature of the furnace is the standard 
uncertainty of measurement associated with the temperature of the furnace because 
the temperature point is a defined value (exactly known). 
 

quantity 
 

Xi 

estimate 
 

xi 

standard 
uncertainty 

u(xi) 

probability 
distribution 

sensitivity 
coefficient 

ci 

uncertainty 
contribution 

ui(y) 

ViX 36 248 µV 1,60 µV normal 1,0 1,60 µV 

 ViX1 0 µV 1,00 µV normal 1,0 1,00 µV 

 ViX2 0 µV 0,29 µV rectangular 1,0 0,29 µV 

VR 0 µV 1,15 µV rectangular 1,0 1,15 µV 

VLX 0 µV 2,9 µV rectangular 1,0 2,9 µV 

t 0,5 °C 0,641 °C normal 38,5 µV/°C 24,5 µV 

t0X 0 °C 0,058 °C rectangular -25,6 µV/°C -1,48 µV 

VX 36 229 µV    25,0 µV 

S5.19 Expanded uncertainties 
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The expanded uncertainty associated with the measurement of the temperature of 

the furnace is 

U  = k  u(tX) = 2  0,641 °C  1,3 °C 

The expanded uncertainty associated with the emf value of the thermocouple to be 

calibrated is 

U = k  u(VX) = 2  25,0 µV  50 µV 

 

S5.20 Reported result 

The type N thermocouple shows, at the temperature of 1000,0 °C with its cold junction 

at a temperature of 0 °C, an emf of 36 230 µV ± 50 µV. 

The reported expanded uncertainty of measurement is stated as the standard 

uncertainty of measurement multiplied by the coverage factor k such that the 

coverage probability corresponds to approximately 95 %. 

 

S6 CALIBRATION OF A POWER SENSOR AT A FREQUENCY OF 19 GHZ 

 
S6.1 The measurement involves the calibration of an unknown power sensor with respect 

to a calibrated power sensor used as a reference by substitution on a stable transfer 

standard of known small reflection coefficient. The measurement is made in terms of 

calibration factor, which is defined as the ratio of incident power at the reference 

frequency of 50 MHz to the incident power at the calibration frequency under the 

condition that both incident powers give equal power sensor response. At each 

frequency, one determines the (indicated) ratio of the power for the sensor to be 

calibrated, respectively the reference sensor and the internal sensor that forms part 

of the transfer standard, using a dual power meter with ratio facility.  

 

S6.2 Schematic of the measuring system 
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S6.3 The quantity K , termed ‘calibration factor’ by some manufacturers, is defined as:  

K
P

P

P

P
= =

+

+

Ir

Ic

r Ar

c Ac

( )

( )

1

1

2

2




  (S6.1) 

for the equal power meter indication 

where:  

Pr - incident power at the reference frequency (50 MHz),  

Pc - incident power at the calibration frequency,  

r - voltage reflection coefficient of the sensor at the reference frequency  

c - voltage reflection coefficient of the sensor at the calibration frequency 

PAr - power absorbed by the sensor at the reference frequency  

PAc - power absorbed by the sensor at the calibration frequency 

 

S6.4  The calibration factor of the unknown sensor is obtained from the relationship 

K K K
M M

M M
p p p

r

X S D= +( ) Sr Xc

Sc X

Cr Cc  (S6.2) 

where:  

 

KS - calibration factor of the reference power sensor; 

KD - change of the calibration factor of the reference power sensor since 

its last calibration due to drift; 

MSr - mismatch factor of reference sensor at the reference frequency; 

MSc - mismatch factor of standard sensor at the calibration frequency; 

MXr - mismatch factor of sensor to be calibrated at the reference 

frequency; 

MXc - mismatch factor of sensor to be calibrated at the calibration 

frequency; 

pCr - correction of the observed ratio for non-linearity and limited 

resolution of the power meter at power ratio level of the reference 

frequency; 

pCc - correction of the observed ratio for non-linearity and limited 

resolution of the power meter at power ratio level of the calibration 

frequency; 

p
p p

p p
=

Sr Xc

Sc Xr

 - observed ratio of power ratios derived from:  

pSr - indicated power ratio for the reference sensor at the reference 

frequency; 

pSc - indicated power ratio for the reference sensor at the calibration 

frequency; 
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pXr - indicated power ratio for the sensor to be calibrated at the reference 

frequency; 

pXc - indicated power ratio for the sensor to be calibrated at the calibration 

frequency.  

 

S6.5 Reference sensor (KS): The reference sensor was calibrated six months before the 

calibration of the unknown power sensor. The value of the calibration factor, given in 

the calibration certificate, is (95,7 ± 1,1) % (coverage factor k = 2), which may also be 

expressed as 0,957 ± 0,011. 

 

S6.6 Drift of the standard (KD): The drift of the calibration factor of the reference 

standard is estimated from annual calibrations to be -0,002 per year with deviations 

within ±0,004. From these values, the drift of the reference sensor, which was 

calibrated half a year ago, is estimated to equal -0,001 with deviations within ±0,002. 

 

S6.7 Linearity and resolution of the power meter (pCr, pCc): The expanded uncertainty 

of 0,002 (coverage factor k = 2) is assigned to the power meter readings at the power 

ratio level of the reference frequency and of 0,0002 (coverage factor k = 2) at the 

power ratio level of calibration frequency due to non-linearity of the power meter used. 

These values have been obtained from previous measurements. Since the same 

power meter has been used to observe both pS and pX, the uncertainty contributions 

at the reference as well at the calibration frequency are correlated. Because power 

ratios at both frequencies are considered, the effect of the correlations is to reduce 

the uncertainty. Thus, only the relative difference in the readings due to systematic 

effects should be taken into account (see the mathematical note in paragraph S3.12), 

resulting in a standard uncertainty of 0,00142 associated with the correction factor pCr 

and 0,000142 with the correction factor pCc.  

The expanded uncertainty of measurement stated for the readings of the power meter 

contains linearity and resolution effects. The linearity effects are correlated whereas 

the resolution effects are uncorrelated. As shown in S3.12, building the power ratio 

cancels the influence of correlations and gives a reduced standard uncertainty of 

measurement to be associated with the ratio. In the calculations above, however, the 

separated correlated and uncorrelated contributions are not known and the values 

given are upper bounds for the standard uncertainty of measurement associated with 

ratios. The uncertainty budget finally shows that the contributions arising from these 

ratios are insignificant, i.e. the approximations are justified. 

 

S6.8 Mismatch factors (MSr, MSc, MXr MXc): As the transfer standard system is not 

perfectly matched and the phase of the reflection coefficients of the transfer standard, 

the unknown and the standard power sensors are not known, there will be an 

uncertainty due to mismatch for each sensor at the reference frequency and at the 

calibration frequency. The corresponding limits of deviation have to be calculated for 

the reference and the calibration frequencies from the relationship: 

 MS,X G S,X= 1 2   (S6.3) 
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where the magnitudes of the reflection coefficients of the transfer standard, the 

reference sensor and the sensor to be calibrated are: 

 

 50 MHz 18 GHz 

G
 0,02 0,07 

S
 0,02 0,10 

X
 0,02 0,12 

The probability distribution of the individual contributions is U-shaped. This is taken 

into account by replacing the factor 1/3 for a rectangular distribution by 1/2 in 

calculating the variance from the square of the half-width determined from the limits. 

The standard uncertainty due to mismatch is therefore obtained from: 

                (S6.4) 

Note: The values of the reflection coefficients are the results of measurements which 

are themselves subject to uncertainty. This is accounted for by adding the square root 

of the sum of the uncertainty of measurement squared and the measured value 

squared. 

 

S6.9 Correlation: None of the input quantities is considered to be correlated to any 

significant extent. 

 

S6.10 Measurements (p): Three separate readings are made which involve disconnection 

and reconnection of both the reference sensor and the sensor to be calibrated on the 

transfer standard to take connector repeatability into account. The power meter 

readings used to calculate the observed power ratio p are as follows: 

 

obs. no pSr pSc pXr pXc p 

1 1,000 1 0,992 4 1,000 1 0,969 8 0,977 2 

2 1,000 0 0,994 2 1,000 0 0,961 5 0,967 1 

3 0,999 9 0,995 3 1,000 1 0,979 2 0,983 6 

arithmetic mean:    p = 0 976, 0 

experimental standard deviation: s p( ) = 0 0083,   

standard uncertainty:  u p s p( ) ( )= = =
0 0083

3
0 0048

,
,  
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S6.11 Uncertainty budget (KX): 

 

quantity 
 

Xi 

estimate 
 

xi 

standard 
uncertainty 

u(xi) 

probability 
distribution 

sensitivity 
coefficient 

ci 

uncertainty 
contribution 

ui(y) 

KS 0,957 0,005 5 normal 0,976 0,0053 7 

KD -0,001 0,001 2 rectangular 0,976 0,0011 3 

MSr 1,000 0,000 6 U-shaped 0,933 0,0005 3 

MSc 1,000 0,009 9 U-shaped -0,933 0,0092 4 

MXr 1,000 0,000 6 U-shaped -0,933 -0,0005 3 

MXc 1,000 0,011 9 U-shaped 0,933 0,0111 0 

pCr 1,000 0,001 4 normal 0,933 0,0013 2 

pCc 1,000 0,000 1 normal 0,933 0,0001 3 

p 0,976 0,004 8 normal 0,956 0,0045 9 

KX 0,933    0,0162 3 

 

S6.12 Expanded uncertainty: 

U = k  u(KX) = 2  0,016 23  0,032 

 

Although the determination of p is based on only three values (and thus v = 2), the 

contribution for p to the total uncertainty is about 1/4, thus the effect of the poor 

quality of the estimate of up is reduced. Hence, the standard coverage factor k=2 

can be used." 

In fact, there should be a calculation of veff in the budget according to Appendix E 

(veff ~ 310) 

 

S6.13 Reported result: 

The calibration factor of the power sensor at 18 GHz is 0,933 ± 0,032, which may also 

be expressed as (93,3 ± 3,2) %. 

The reported input quantities are considered expanded uncertainty of measurement 

is stated as the standard uncertainty of measurement multiplied by the coverage 

factor k such that the coverage probability corresponds to approximately 95 %. 

 

S7 CALIBRATION OF A COAXIAL STEP ATTENUATOR AT A SETTING OF 30 

DB (INCREMENTAL LOSS) 

 

S7.1 The measurement involves the calibration of a coaxial step attenuator at 10 GHz 

using an attenuation measuring system containing a calibrated step attenuator which 

acts as the attenuation reference. The method of measurement involves the 
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determination of the attenuation between matched source and matched load. In this 

case the unknown attenuator can be switched between settings of 0 dB and 30 dB 

and it is this change (called incremental loss) that is determined in the calibration 

process. The attenuation measuring system has a digital readout and an analogue 

null detector which is used to indicate the balance condition.  

 

S7.2 Schematic of the measuring system 

 
 
 
 
 
 
 
 
 

S7.3 The attenuation LX
 of the attenuator to be calibrated is obtained from the relation:  

 

LX = LS + LS + LD + LM + LK + Lib - Lia + L0b - L0a  (S7.1) 

 

where:  

LS = Lib – Lia - attenuation difference of reference attenuator derived from: 

Lia - indicated attenuation with the attenuator to be calibrated, set at 

0 dB; 

Lib - indicated attenuation with the attenuator to be calibrated, set at 

30 dB; 

LS - correction obtained from the calibration of the reference 

attenuator;  

LD - change of the attenuation of the reference attenuator since its 

last calibration due to drift; 

LM - correction due to mismatch loss; 

LK - correction for leakage signals between input and output of the 

attenuator to be calibrated due to imperfect isolation; 

Lia, Lib - corrections due to the limited resolution of the reference 

detector at 0 dB and 30 dB settings; 

L0a, L0b - corrections due to the limited resolution of the null detector at 

0 dB and 30 dB settings. 

 

S7.4 Reference attenuator (LS): The calibration certificate for the reference attenuator 

gives a value of attenuation for the 30,000 dB setting at 10 GHz of 30,003 dB with an 

associated expanded uncertainty of 0,005 dB (coverage factor k = 2). The correction 

of +0,003 dB with the associated expanded uncertainty of 0,005 dB (coverage factor 

k = 2) is considered to be valid for attenuation settings of the reference attenuator that 

differ not more than ±0,1 dB from the calibrated setting of 30,000 dB. 

 

30.052 dB 

dB  3  0  0  0 dB G 

  
  

  
RF attenuation measuring system  

Step attenuator 
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S7.5 Drift of the reference (LD): The drift of the attenuation of the reference attenuator is 

estimated from its calibration history to be zero with limits ±0,002 dB.  

S7.6 Mismatch loss (LM): The reflection coefficients of the source and the load at the 

insertion point of the attenuator to be calibrated have been optimised by impedance 

matching to as low magnitudes as possible. Their magnitudes and the magnitudes of 

the scattering coefficients of the attenuator to be calibrated have been measured but 

their phase remains unknown. Without any phase information, a correction for 

mismatch error cannot be made, but the standard uncertainty (in dB) due to the 

incomplete knowledge of the match is estimated from the relationship [1]: 

 

u L = s s s s s s( ) ( ) ( ) ( ) M S 11a 11b L 22a 22b S L 21a 21b

8 686

2

2 2 2 2 2 2 2 2 4 4,
   + + + +  +  

 (S7.2) 

with the source and load reflection coefficients 

 

L = 0,03 and S = 0,03 

 

and the scattering coefficients of the attenuator to be calibrated at 10 GHz  

 

 0 dB 30 dB 

s11 0,05 0,09 

s22 0,01 0,01 

s21 0,95 0,031 

as u(LM) = 0,020 dB. 
 
Note: The values of scattering and reflection coefficients are the results of 
measurements which are themselves not exactly known. This is accounted for by 
adding the square root of the sum of uncertainty of measurement squared and the 
measured value squared. 
 

S7.7 Leakage correction (LK): Leakage signals through the attenuator to be calibrated 
have been estimated from the measurements at 0 dB setting to be at least 100 dB 
below the measurement signal. The correction for leakage signals is estimated from 
these findings to be within ±0,003 dB at the 30 dB setting. 

 

S7.8 Resolution of the reference attenuator setting (Lia, Lib): The digital readout of 
the reference attenuator has a resolution of 0,001 dB from which the correction for 
resolution is estimated to be within ±0,0005 dB. 

 

S7.9 Resolution of the null detector (L0a, L0b): The detector resolution was determined 
from a previous evaluation to have a standard deviation of 0,002 dB at each reading 
with assumed normal probability distribution. 

 

S7.10 Correlation: None of the input quantities is considered to be correlated to any 
significant extent. 
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S7.11 Measurements (LS): Four observations are made of the incremental loss of the 
attenuator to be calibrated between settings of 0 dB and 30 dB: 

 

obs. no. obs. values at 

 0 dB setting 30 dB setting 

1 0,000 dB 30,033 dB 

2 0,000 dB 30,058 dB 

3 0,000 dB 30,018 dB 

4 0,000 dB 30,052 dB 

arithmetic mean:    LS = 30 040, dB  

experimental standard deviation: s(LS) = 0,018 dB  

standard uncertainty:  u L s L( ) ( )S S= = =
0 018

4
0 009

,
,

dB
dB  

 
S7.12 Uncertainty budget (LX):  
 

quantity 
 

Xi 

estimate 
 

xi 

standard 
uncertainty 

u(xi) 

probability 
distribution 

sensitivity 
coefficient 

ci 

uncertainty 
contribution 

ui(y) 

LS 30,040 dB 0,0090 dB normal 1,0 0,0090 dB 

LS 0,003 dB 0,0025 dB rectangular 1,0 0,0025 dB 

LD 0 dB 0,0012 dB rectangular 1,0 0,0012 dB 

LM 0 dB 0,0198 dB U-shaped 1,0 0,0198 dB 

LK 0 dB 0,0017 dB rectangular 1,0 0,0017 dB 

Lia 0 dB 0,0003 dB rectangular -1,0 -0,0003 dB 

Lib 0 dB 0,0003 dB rectangular 1,0 0,0019 dB 

L0a 0 dB 0,0020 dB normal -1,0 0,0020 dB 

L0b 0 dB 0,0020 dB normal 1,0 -0,0020 dB 

LX 30,043 dB    0,0223 dB 

 
S7.13 Expanded uncertainty: 

 

U = k  u(LX) = 2  0,0223 dB  0,0446 dB 

 

The combined standard uncertainty uc is about 2.5 times uLS, the only contribution 

with a limited degrees of freedom, v = n - 1 = 3 . Hence veff ~ 3 x (2.5)4 ~ 100, and the 

use of k=2 is warranted. 

 

S7.14 Reported result: 

The measured value of the step attenuator for a setting of 30 dB at 10 GHz is 

(30,043 ± 0,045) dB. 
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The reported expanded uncertainty of measurement is stated as the standard 

uncertainty of measurement multiplied by the coverage factor k such that the 

coverage probability corresponds to approximately 95 %. 

 

S7.15 Reference 

[1] Harris, I. A. ; Warner, F. L. : Re-examination of mismatch uncertainty when 

measuring microwave power and attenuation. In: IEE Proc., Vol. 128, Pt. H, 

No. 1, Febr. 1981 
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S8 INTRODUCTION 

 
S8.1 The following examples are chosen to demonstrate further the method of evaluating 

the uncertainty of measurement. They supplement the examples presented in 

Supplement 1 to EA-4/02. The present collection of examples focuses on situations 

where there are one or two dominant terms in the uncertainty propagation or where 

the number of repeated measurements is small. 

 

S8.2 The examples are chosen to illustrate situations encountered in practice. It should be 

emphasised, however, that in practical applications there is no need to go through the 

mathematical derivations presented in these examples, in particular in the 

mathematical notes appended to some of the examples. Rather, the user is 

encouraged to employ the results of the theoretical presentations after having made 

himself acquainted with the conditions that have to be fulfilled. For instance, if it is 

ascertained, in a given situation, that the result of measurement has a rectangular 

distribution (as would be the case if there were only one term, rectangularly 

distributed, that needed to be considered in the propagation), one can immediately 

draw the conclusion that the coverage factor to be used to arrive at a coverage 

probability of 95 % is k = 1,65 (see S9.14). 

 

S8.3 One general conclusion that may be drawn from the uncertainty propagation is that in 

the case of only one dominant contribution the type of distribution of this contribution 

applies for the result of measurement as well. However, to evaluate the uncertainty of 

the result of measurement, the applicable sensitivity coefficient has to be employed, 

as usual. 

 

S8.4 It should be added that the situation where there is only one or a few dominant terms 

to the uncertainty of measurement is often met in connection with less complicated 

measuring instruments, where the dominant term often is due to the limited resolution 

of the instrument. Thus it may appear a paradox that the treatment of uncertainty of 

measurement for less complicated instruments, as shown by the examples of this 

Supplement, is more complicated than the treatment of the more straight-forward 

examples in Supplement 1. However, it should be kept in mind that the mathematical 

derivations, which may be felt as complications, are inserted for pedagogical reasons 

at places where they are needed instead of presenting them in the main document. 

 

S8.5 The examples are based on drafts prepared by EA Expert Groups. These drafts have 

been simplified and harmonised to make them transparent to the laboratory staff in all 

fields of calibration. It is thus hoped that this set of examples, like the preceding set 

published as Supplement 1 to EA-4/02, will contribute to a better understanding of the 

details of setting up the model of evaluation and to the harmonisation of the process 

of evaluating the uncertainty of measurement, independent of the field of calibration. 

 

S8.6 The contributions and values given in the examples are not intended to imply 

mandatory or preferred requirements. Laboratories should determine the uncertainty 

contributions on the basis of the model function they use in the evaluation of the 

particular calibration they perform and report the evaluated uncertainty of 

measurement on the calibration certificate they issue. 
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S8.7 The presentation of the examples follows the common scheme presented and 

implemented in the first supplement to EA-4/02. For details the reader is referred to 

clause S1.4 of that document. 

 

S8.8 The uncertainty analysis of the examples is intended to represent the fundamentals 

of the specific measurement process and the method of evaluating the measurement 

result and the associated uncertainty. To keep the analysis transparent, also for those 

who are not experts in the relevant metrological field, a uniform method for the choice 

of the symbols of quantities has been followed, focused more on the physical 

background than on the current practice in different fields. 

 

S8.9 There are several recurrent quantities involved in all cases. One of them is the mea-

surand, i.e., the quantity to be measured, another is the quantity presented by the 

working standard, which realises the local unit; with this quantity the measurand is 

compared. Besides these two quantities there are several others, in all cases, which 

take the role of additional local quantities or corrections. 

 

S8.10 Corrections describe the imperfect equality between a measurand and the result of a 

measurement. Some of the corrections are given by complete results of 

measurement, i.e., a measured value and its associated measurement uncertainty. 

For others the distribution of values is inferred from more or less complete knowledge 

of their nature. In most cases this will lead to an estimation of the limits for the 

unknown deviations. 

 

S8.11 In certain cases the quantity presented by a working standard is characterised by the 

nominal value of the standard. Thus, nominal values, which generally speaking 

characterise or identify calibration artefacts, often enter the uncertainty analysis. 

 

S8.12 To distinguish in the mathematical models of evaluation between these concepts, the 

examples have been designed to follow the notational rules given below. It is evident, 

however, that it is not possible to follow such rules strictly, because the practice 

concerning the use of symbols is different in different metrological fields. 

 

S8.13 The notation applied here distinguishes between main values, nominal values, 

correction values and values of limits: 

 

Main values are measured or observed values that contribute an essential part to the 

value of a measurand. They are represented by lower-case letters in italics; they will 

be preceded by an upper-case Greek delta if the quantity represents a difference. 

 

EXAMPLE: 

 

tiX  - temperature indicated by a thermometer X to be calibrated. (Index i  means 

indicated), 

 

l  - observed difference in the displacement of a measuring spindle. 
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Nominal values are assigned values of the realisation of a quantity by a standard or 

a measuring instrument. They are approximate values that give the main part of the 

realised value. They are represented by upper-case letters in italics. 

 

EXAMPLE: 

 

L  - nominal length of a gauge block to be calibrated. 

 

Correction values give small deviations from the main values that are known or have 

to be estimated. In most cases they are additive. They are represented by the symbol 

chosen for the quantity under consideration, preceded by a lower-case Greek delta. 

 

EXAMPLE: 

 

 mD - possible deviation because of the drift of the value of a reference weight 

since its last calibration 

 

 mC - correction for eccentricity of load and magnetic effects in the calibration of a 

weight. 

 

Values of limits are fixed, estimated values of possible variations of the unknown 

values of a quantity. They are represented by the symbol chosen for the quantity 

under consideration, preceded by an upper-case Greek delta. 

 

EXAMPLE: 

 

X - estimated half-width of the interval of possible deviations of a linear thermal 

resistivity coefficient given in a manufacturer’s specification for a resistor to 

be calibrated. 

 

The differentiation between different quantities of the same kind is affected by indices 

as shown in the examples. The internationally accepted notational rules for physical 

quantities have been followed: indices representing physical quantities are given in 

italics whereas indices that symbolise artefacts, instruments and so on are written in 

upright letters. 

 

S8.14 Defined reference values are represented by a quantity symbol with the index zero. 

 

EXAMPLE: 

 

p0  - reference pressure, e.g., of 1000 mbar. 

 

S8.15 Ratios of quantities of the same kind (dimensionless ratios) are represented by lower-

case letters in italics. 
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EXAMPLE: 

 

r R R= i X i N/   - ratio of indicated resistance of an unknown resistor and a reference 

resistor (index i means indicated). 

 

S8.16 If several indices are used, the sequence of indices is chosen in such a way that the 

index representing the most general concept is leftmost and the one representing the 

most specific concept is rightmost. 

 

EXAMPLE: 

 

Vi 1 ,Vi 2  - voltage indicated by voltmeter '1' and voltmeter '2', respectively 

 

S8.17 The examples in this second supplement to EA-4/02 are intended to be followed by 

others, illustrating different aspects encountered in connection with the calibration of 

measuring instruments. Examples may also be found in EA Guidance Documents 

dealing with the calibration of specific types of measuring instruments. 

 

S9 CALIBRATION OF A HAND-HELD DIGITAL MULTIMETER AT 100 V DC 

 
S9.1 As part of a general calibration, a hand-held digital multimeter (DMM) is calibrated at 

an input of 100 V DC using a multifunction calibrator as a working standard. The 

following measuring procedure is used: 

1) The calibrator’s output terminals are connected to the input terminals of the 

DMM using suitable measuring wires. 

2) The calibrator is set to its 100 V setting and, after a suitable stabilising period, 

the DMM reading is noted. 

3) The error of indication of the DMM is calculated using the DMM readings and 

the calibrator settings. 

 

S9.2 It must be noted that the error of indication of the DMM which is obtained using this 

measuring procedure includes the effect of offset as well as deviations from linearity. 

 

S9.3 The error of indication EX  of the DMM to be calibrated is obtained from 

 

 
SXiSXiX VVVVE  −+−=  (S9.1) 

where 

 

ViX  - voltage, indicated by the DMM (index i means indication), 

VS  - voltage generated by the calibrator,  

XiV  - correction of the indicated voltage due to the finite resolution 
of the DMM, 
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SV  - correction of the calibrator voltage due to 

(1) drift since its last calibration, 

(2) deviations resulting from the combined effect of 
offset, non-linearity and differences in gain, 

(3) deviations in the ambient temperature, 

(4) deviations in mains power, 

(5) loading effects resulting from the finite input 
resistance of the DMM to be calibrated. 

 
S9.4 Because of the limited resolution of the indication of the DMM, no scatter in the 

indicated values is observed. 

 

S9.5 DMM readings (
XiV ) 

The DMM indicates the voltage 100,1 V at the calibrator setting 100 V. The DMM 

reading is assumed to be exact (see S9.4). 

 

S9.6 Working standard ( SV ) 

The calibration certificate for the multifunction calibrator states that the voltage 

generated is the value indicated by the calibrator setting and that the associated 

expanded relative uncertainty of measurement is W=0,000 02 (coverage factor k=2), 

resulting in an expanded uncertainty of measurement associated with the 100 V 

setting of U=0,002 V (coverage factor k=2). 

 

S9.7 Resolution of DMM to be calibrated (
XiV ) 

The least significant digit of the DMM display corresponds to 0,1 V. Each DMM 

reading has a correction due to the finite resolution of the display which is estimated 

to be 0,0 V with limits of +0.05 V (i.e., one half of the magnitude of the least significant 

digit). 

 

S9.8 Other corrections ( SV ) 

Because of the fact that individual figures are not available the uncertainty of 

measurement associated with the different sources is derived from the accuracy 

specification given by the manufacturer of the calibrator. These specifications state 

that the voltage generated by the calibrator coincides with the calibrator setting within 

(0,000 1VS +1 mV)1 under the measuring conditions  

(1) the ambient temperature is within the range 18 C to 23 C  

(2) the mains voltage powering the calibrator is in the range 210 V to 250 V, 

(3) the resistive load at the calibrator’s terminals is greater than 100 k, 

(4) the calibrator has been calibrated within the last year. 

 

 
1 A widely used method of presenting accuracy specification of measuring instruments in data sheets or manuals 

consists in giving the specification limits in terms of ‘settings’. For the calibrator, the statement would be 

(0,01% of setting + 1 mV). Even if this method is considered to be equivalent to the expression given above it is 

not used here because it may be misleading in many cases and because it does not represent an equation of physical 

quantities in the internationally accepted symbolic nomenclature. 
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Since these conditions of measurement are fulfilled and the calibration history of the 

calibrator shows that the manufacturer’s specification may be relied upon, the 

correction to be applied to the voltage generated by the calibrator is assumed to be 

0,0 V within 0,011 V. 

 

S9.9 Correlation 

None of the input quantities is considered to be correlated to any significant extent. 

 

S9.10 Uncertainty budget ( XE ) 

 

quantity 
 

iX  

estimate 
 

ix  

standard 
uncertainty 

)( ixu  

probability 
distribution 

 

sensitivity 
coefficient 

ic  

uncertainty 
contribution 

)(yui
 

Vi X  100,1 V - - - - 

VS  100,0 V 0,001 V normal -1,0 -0,001 V 

XiV  0,0 V 0,029 V rectangular 1,0 0,029 V 

SV  0,0 V 0,0064 V rectangular -1,0 -0,0064 V 

EX  0,1 V    0,030 V 

 
S9.11 Expanded uncertainty 

The standard uncertainty of measurement associated with the result is clearly 

dominated by the effect of the finite resolution of the DMM. The final distribution is not 

normal but essentially rectangular. Therefore, the method of effective degrees of 

freedom described in Annex E of EA-4/02 is not applicable. The coverage factor 

appropriate for a rectangular distribution is calculated from the relation given in eq. 

(S9.8) in the mathematical note S9.14. 

 

  

 

S9.12 Reported result 

The measured error of indication of the hand-held digital voltmeter at 100 V is 

(0,10 0,05) V. 

 

The reported expanded uncertainty of measurement is stated as the standard 

uncertainty of measurement multiplied by the coverage factor 65,1=k  which has 

been derived from the assumed rectangular probability distribution for a coverage 

probability of 95%. 

 

S9.13 Additional remark 

The method used for calculating the coverage factor is clearly related to the fact that 

the measurement uncertainty associated with the result is dominated by the effect of 

the finite resolution of the DMM. This will be true for the calibration of all low-resolution 

indicating instruments provided the finite resolution is the only dominant source in the 

uncertainty budget. 

 



EA-4/02 • Evaluation of the Uncertainty of Measurement in calibration 

4th April 2022_rev03  Page 58 of 78 

S9.14 Mathematical note 

If the situation of measurement is such that one of the uncertainty contributions in 

the budget can be identified as a dominant term, for instance the term with index 1, 

the standard uncertainty to be associated with the measurement result y  can be 

written as 

 

 )()()( 2

1 yuyuyu 2

R+= . (S9.2) 

 

Here is 
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denotes the total uncertainty contribution of the non-dominant terms. As long as the 

ratio of the total uncertainty contribution u yR ( )  of the non-dominant terms to the 

uncertainty contribution u y1( )  of the dominant term is not larger than 0,3, eq. (S9.2) 

may be approximated by 
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The relative error of approximation is smaller than 
3101 − . The maximum relative 

change in the standard uncertainty resulting from the factor within the brackets in 

eq. (S9.4) is not larger than 5%. This value is within the accepted tolerance for 

mathematical rounding of uncertainty values. 

 

Under these assumptions the distribution of values that could reasonably be 

attributed to the measurand is essentially identical with the distribution resulting from 

the known dominant contribution. From this distribution density ( )y  the coverage 

probability p  may be determined for any value of the expanded measurement 

uncertainty U  by the integral relation 

 

 
+

−

=

Uy

Uy

dyyUp ')'()(  . (S9.5) 

 

Inverting this relation for a given coverage probability results in the relation between 

the expanded measurement uncertainty and the coverage probability U U p= ( )  for 

the given distribution density ( )y . Using this relation, the coverage factor may 

finally be expressed as 
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pU
pk = . (S9.6) 
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In the case of the hand-held digital voltmeter the dominant uncertainty contribution 

resulting from the finite resolution of the indication is V029,0)( =XX
Eu V

 whereas 

the total uncertainty contribution of the non-dominant terms is . 

The relevant ratio is 22,0)(/)( =XXR X
EuEu V . Thus, the resulting distribution of 

values that can reasonably be attributed as errors of indications is essentially 

rectangular. The coverage probability for a rectangular distribution is linearly related 

to the expanded measurement uncertainty ( a being the half-width of the rectangular 

distribution) 

 

 
a

U
p = . (S9.7) 

 

Solving this relation for the expanded measurement uncertainty U  and inserting the 

result together with the expression of the standard measurement uncertainty related 

to a rectangular distribution as given by eq. (3.8) of EA-4/02 finally gives the relation 

 

 3)( ppk =  . (S9.8) 

 

For a coverage probability p = 95 % applicable in the EA, the relevant coverage 

factor is thus k = 1 65, . 

 

S10 CALIBRATION OF A VERNIER CALLIPER 

 
S10.1 A vernier calliper made of steel is calibrated against grade I gauge blocks of steel 

used as working standards. The measurement range of the calliper is 150 mm. The 

reading interval of the calliper is 0,05 mm (the main scale interval is 1 mm and the 

vernier scale interval 1/20 mm). Several gauge blocks with nominal lengths in the 

range (0,5 – 150) mm are used in the calibration. They are selected in such a way 

that the measurement points are spaced at nearly equal distances (e.g. at 0 mm, 

50 mm, 100 mm, 150 mm) but give different values on the vernier scale (e.g. 0,0 mm, 

0,3 mm, 0,6 mm, 0,9 mm). The example concerns the 150 mm calibration point for 

measurement of external dimensions. Before calibration several checks of the 

condition of the calliper are made. These include dependence of the result of 

measurement on the distance of the measured item from the beam (Abbe error), 

quality of the measuring faces of the jaws (flatness, parallelism, squareness), and 

function of the locking mechanism. 

 

S10.2 The error of indication XE of the calliper at the reference temperature t0 20= C  is 

obtained from the relation: 

 

 
MXiSSXiX lltLllE  +++−=  (S10.1) 

where:  
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Xil  - indication of the calliper, 

lS  - length of the actual gauge block, 

LS  - nominal length of the actual gauge block, 

  - average thermal expansion coefficient of the calliper and the gauge 
block, 

t  - difference in temperature between the calliper and the gauge block, 

Xil  - correction due to the finite resolution of the calliper, 

Ml  
- correction due to mechanical effects, such as applied measurement 

force, Abbe errors, flatness and parallelism errors of the measurement 
faces. 

 

S10.3 Working standards (
Sl , LS ) 

The lengths of the reference gauge blocks used as working standards, together with 

their associated expanded uncertainty of measurement, are given in the calibration 

certificate. This certificate confirms that the gauge blocks comply with the 

requirements for grade I gauge blocks according to ISO 3650, i.e. that the central 

length of the gauge blocks coincides within ±0,8 µm with the nominal length. For the 

actual lengths of the gauge blocks their nominal lengths are used without correction, 

taking the tolerance limits as the upper and lower limits of the interval of variability. 

 

S10.4 Temperature (t , ) 

After an adequate stabilisation time, the temperatures of the calliper and the gauge 

block are equal within ±2 °C. The average thermal expansion coefficient is 11,5·10-6 

°C-1. (The uncertainty in the average thermal expansion coefficient and in the 

difference of the thermal expansion coefficients has not been taken into account; its 

influence is considered negligible for the present case. Cf. EA-4/02-S1, example S4.) 

 

S10.5 Resolution of the calliper (
Xil ) 

The scale interval of the vernier scale is 0,05 mm. Thus variations due to the finite 

resolution are estimated to have rectangular limits of  25 µm. 

 

S10.6 Mechanical effects ( Ml ) 

These effects include the applied measurement force, the Abbe error and the play 

between the beam and the sliding jaw. Additional effects may be caused by the fact 

that the measuring faces of the jaws are not exactly flat, not parallel to each other and 

not perpendicular to the beam. To minimise effort, only the range of the total variation, 

equal to ±50 µm is considered. 

 

S10.7 Correlation 

None of the input quantities is considered to be correlated to any significant extent. 

 

S10.8 Measurements (
Xil ) 

The measurement is repeated several times without detecting any scatter in the 

observations. Thus uncertainty due to limited repeatability does not give a 

contribution. The result of measurement for the 150 mm gauge block is 150,10 mm. 
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S10.9 Uncertainty budget ( lX ) 

 

quantity 
 

X i  

estimate 
 

xi  

standard 
uncertainty 

u xi( )  

probability 
distribution 

sensitivity 
coefficient 

ci  

uncertainty 
contribution 

u yi ( )  

Xil  150,10 mm - - - - 

lS  150,00 mm 0,46 µm rectangular -1,0 -0,46 µm 

t  0 1,15 K rectangular 1,7 µm.K-1 2,0 µm 

Xil  0 14 µm rectangular 1,0 14 µm 

Ml  0 29 µm rectangular 1,0 29 µm 

XE  
0,10 mm    32 µm 

 
S10.10 Expanded uncertainty 

The uncertainty of measurement associated with the result is clearly dominated by 

the combined effect of the measurement force and the finite resolution of the vernier. 

The final distribution is not normal but essentially trapezoidal with a ratio  = 0 33,  of 

the half-width of the plateau region to the half-width of the variability interval. 

Therefore the method of effective degrees of freedom described in EA-4/02, Annex E 

is not applicable. The coverage factor k = 1,83 appropriate for this trapezoidal 

distribution of values is calculated from eq. (S10.10) of the mathematical note S10.13. 

Thus 

 
 

S10.11 Reported result 

At 150 mm the error of indication of the calliper is (0,10 ± 0,06) mm. 

 

The reported expanded uncertainty of measurement is stated as the standard 

uncertainty of measurement multiplied by the coverage factor k = 183,  which has 

been derived from the assumed trapezoidal probability distribution for a coverage 

probability of 95 %. 

 

S10.12 Additional remark 

The method used for calculating the coverage factor is clearly related to the fact that 

uncertainty of measurement associated with the result is dominated by two influences: 

the mechanical effects and the finite resolution of the vernier scale. Thus the 

assumption of a normal distribution for the output quantity is not justified and the 

conditions of EA-4/02, paragraph 5.6 apply. In the sense that probabilities and 

probability densities in practice may only be determined to within 3 %− 5 %, the 

distribution is essentially trapezoidal, obtained by convolution of the two rectangular 

distributions associated with the dominant contributions. The half-widths of the base 

and the top of the resulting symmetrical trapezoid are 75 m and 25 m, respectively. 

95 % of the area of the trapezoid is encompassed by an interval 60 m around its 

symmetry axis, corresponding to k = 183, . 
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S10.13 Mathematical note 

If the situation of measurement is such that two of the uncertainty contributions in the 

budget can be identified as dominant terms, the method presented in S9.14 can be 

applied when the two dominant contributions, for instance the terms with indices 1 

and 2, are combined into one dominant term. The standard uncertainty to be 

associated with the measurement result y may be written in this case as 
 

 u y u y u y( ) ( ) ( )= +0

2

R

2
 (S10.2) 

 

where 

 u y u y u y0( ) ( ) ( )= +1

2

2

2
 (S10.3) 

 

denotes the combined contribution of the two dominant terms and 
 

 u y u yi
i

N

R( ) ( )=
=

 2

3

 (S10.4) 

 

the total uncertainty contribution of the remaining non-dominant terms. If the two 

dominant contributions arise from rectangular distributions of values with half-widths 

a1  and a2 , the distribution resulting from convolving them is a symmetrical trapezoidal 

distribution 

  
Fig. 1: Unified symmetrical trapezoidal probability distribution with the value 

=0,33 of the edge parameter, resulting from the convolution of two 

rectangular distributions. 
 

with half-widths 
 

 a a a= +1 2  and b a a= −1 2  (S10.5) 

of the base and the top, respectively (see example in Fig. 1). The distribution may 

be conveniently expressed in the unified form 
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with the edge parameter 
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 (S10.7) 

 

The square of the standard measurement uncertainty deduced from the trapezoidal 

distribution of eq. (S10.6) is 

 

 u y
a

2

2

2

6
1( ) ( )= +   . (S10.8) 

 

Using the distribution of eq. (S10.6) the dependence of the coverage factor on the 

coverage probability is derived according to the method sketched in S9.14 
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Fig. 2 shows the dependence of the coverage factor k  on the value of the edge 

parameter   for a coverage probability of 95 %. 
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Fig. 2: Dependence of the coverage factor k on the value of the edge parameter  

of a trapezoidal distribution for a coverage probability of 95 %. 
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The coverage factor for a coverage probability of 95 % appropriate to a trapezoidal 

distribution with an edge parameter of 95,0  is calculated from the relation  
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S11 CALIBRATION OF A TEMPERATURE BLOCK CALIBRATOR AT A 

TEMPERATURE OF 180 °C2 

 
S11.1 As part of a calibration, the temperature that has to be assigned to the calibration bore 

of a temperature block calibrator, is measured. This is done when the indication of the 

built-in temperature indicator has stabilised at 180,0 °C. The temperature of the 

calibration bore is determined by an inserted platinum resistance thermometer, used 

as a working standard, by measuring the electrical resistance of the thermometer by 

an ac resistance bridge. The temperature tX , that has to be assigned as the 

temperature of the bore when the reading of the built-in temperature indicator is 

180,0 °C, is given by: 

 

 
VHARXiDSSX ttttttttt  ++++−++=  (S11.1) 

 

where: 

 

tS  - temperature of the working standard derived from the ac 
resistance measurement, 

 tS  - temperature correction due to the ac resistance 
measurement, 

 tD  - temperature correction due to drift in the value of the working 
standard since its last calibration, 

 ti X  - temperature correction due to the settability limitations of the 
block temperature calibrator, 

Rt  - temperature correction due to the radial temperature 
difference between the built-in thermometer and the working 
standard, 

At  - temperature correction due to the axial inhomogeneity of 
temperature in the measuring bore, 

 tH  - temperature correction due to hysteresis in the increasing 
and decreasing branches of the measuring cycle, 

 tV  - temperature variation within the time of measurement. 

 
Temperature corrections due to stem conduction are not considered, since the 

platinum resistance thermometer used as working standard has an outer diameter 

d  6 mm . Prior investigations have shown that stem conduction effects can be 

neglected in this case. 

 
2  This process is basic for calibrations in different metrological fields and, therefore, of general interest. The example further 

demonstrates that there are two equivalent ways to tackle this problem: the direct assignment of a value to the indication of 
the instrument and the association of a correction to the indication, usually called the error of indication. 
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S11.2 Working standard ( tS ) 

The calibration certificate of the resistance thermometer used as working standard 

gives the relationship between resistance and temperature. The measured resistance 

value corresponds to a temperature of 180,1 °C, with an associated expanded 

uncertainty of measurement U = 30 mK (coverage factor k = 2 ). 

 

S11.3 Determination of the temperature by resistance measurement( tS ) 

The temperature of the resistance thermometer used as working standard is 

determined as 180,1 °C. The standard measurement uncertainty associated with the 

resistance measurement converted to temperature corresponds to u t( ) S = 10 mK

. 

 

S11.4 Drift of the temperature of the working standard ( tD ) 

From general experience with platinum resistance thermometers of the type used as 

working standard in the measurement, the change of temperature due to resistance 

ageing since the last calibration of the standard is estimated to be within the limits 

±40 mK. 

 

S11.5 Settability of the block temperature calibrator ( ti X ) 

The built-in controlling thermometer of the block temperature calibrator has a scale 

interval of 0,1 K. This gives temperature resolution limits of ±50 mK within which the 

thermodynamic state of the temperature block can be uniquely set. 

 

Note: If the indication of the built-in temperature indicator is not given in units of temperature 

the resolution limits must be converted into equivalent temperature values by multiplying the 

indication with the relevant instrument constant. 

 

S11.6 Radial inhomogeneity of temperature ( Rt ) 

The radial temperature difference between the measuring bore and the built-in 

thermometer has been estimated to be within ±100 mK. 

 

S11.7 Axial inhomogeneity of temperature ( At ) 

The temperature deviations due to axial inhomogeneity of temperature in the 

calibration bore have been estimated from readings for different immersion depths to 

be within ±250 mK. 

 

S11.8 Hysteresis effects ( tH ) 

From readings of the reference thermometer during measurement cycles of 

increasing and decreasing temperature, the temperature deviation of the calibration 

bore due to hysteresis effect has been estimated to be within ±50 mK. 

 

S11.9 Temperature instability ( tV ) 

Temperature variations due to temperature instability during the measuring cycle of 

30 min are estimated to be within 30 mK. 
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S11.10 Correlations 

None of the input quantities is considered to be correlated to any significant extent. 

 

S11.11 Repeated observations 

Due to the finite resolution of the indication of the built-in thermometer no scatter in 

the indicated values has been observed and taken into account. 

 

S11.12 Uncertainty budget ( tX ) 

 

Quantity 
 

X i  

Estimate 
 

xi  

Standard 
uncertainty 

u xi( )  

Probability 
distribution 

Sensitivity 
coefficient 

ci  

Uncertainty 
contribution 

u yi ( )  

tS  180,1 °C 15 mK normal 1,0 15 mK 

 tS  0,0 °C 10 mK normal 1,0 10 mK 

 tD  0,0 °C 23 mK rectangular 1,0 23 mK 

 ti X  0,0 °C 29 mK rectangular -1,0 -29 mK 

Rt  0,0 °C 58 mK rectangular 1,0 58 mK 

At  0,0 °C 144 mK rectangular 1,0 144 mK 

 tH  0,0 °C 29 mK rectangular 1,0 29 mK 

 tV  0,0 °C 17 mK rectangular 1,0 17 mK 

tX  180,1 °C    164 mK 

 
S11.13 Expanded uncertainty 

The standard uncertainty of measurement associated with the result is clearly 

dominated by the effect of the unknown temperature correction due to the axial 

temperature inhomogeneity in the measuring bore and the radial temperature 

difference between the built-in thermometer and the working standard. The final 

distribution is not normal but essentially trapezoidal. According to S10.13, the 

coverage factor corresponding to the edge parameter 43,0=  is 8,1=k 1.  

 

  

 

S11.14 Reported result 

The temperature boring of the calibration bore that has to be assigned to an indication 

of the built-in controlling thermometer of 180,0 °C is (180,1 ± 0,3) °C.  

 

The reported expanded uncertainty of measurement is stated as the standard 

uncertainty of measurement multiplied by the coverage factor 81,1=k  which has 

been derived from the assumed trapezoidal probability distribution for a coverage 

probability of 95 %. 
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S11.15 Mathematical note concerning the model 

Some metrologists are confused that the indication of the controlling thermometer 

does not appear explicitly in the model function of eq. (S11.1). To fit their needs, the 

problem can alternatively be formulated with the error of indication 

 

 iXX ttE −=  (S11.2) 

 

of the built-in temperature indicator 

 

 
VHARXiDSiSX tttttttttE  ++++−++−=  (S11.3) 

 

The indicated value t i  is a nominal value. Its effect is to shift the scale of the 

measurand. It does, however, not contribute to the uncertainty of measurement 

associated with the error of indication 

 

 u E u t( ) ( )X X=  (S11.4)  

 

The model function of eq. (S11.1) can be regained from eq. (S11.3) using the 

definition of the error of indication in eq. (S11.2). 

 

This note shows that there is not necessarily only one unique way to choose the model 

of evaluation of measurement. The metrologist keeps it in his hands to choose the 

model that suits his habits and his approach to the problem. Model functions that can 

be transformed mathematically from one into the other represent the same 

measurement process. For cases where a continuous scale of indication is involved, 

as in the calibration of the temperature block under consideration, model functions 

that are connected by linear scale transformations may serve as equivalent 

expressions of the measurement problem. 

 

S12 CALIBRATION OF A HOUSEHOLD WATER METER 

 
S12.1 The calibration of a water meter involves the determination of the relative error of 

indication within the applicable flow range of the meter. The measurement is made 

using a test rig that supplies necessary water flow with a pressure of approximately 

500 kPa, a value typical for municipal tap water systems. The water is received in an 

open collecting tank that has been calibrated and determines the reference volume of 

the water. It is empty but wetted at the beginning of the measurement. The collecting 

tank has a narrow neck with an attached scale by which the filling level can be 

detected. The meter to be calibrated is connected between these tanks. It has a 

mechanical counter with pointers. The measurement is done at a flow rate of 2500 l/h 

with standing start-and-stop which means that the flow rate is zero both at the 

beginning and the end of the measurement. The indication of the meter is recorded 

at the beginning and at the end of the measurement. The level is recorded in the 

collecting tank at the end of the measurement. The temperature and pressure of the 

water at the meter, and the temperature of the water in the collecting tank, are 

recorded as well. 
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S12.2 The relative error of indication eX  in a single run is defined as 

 1−
−+

=
X

X1iX2iXi

X
V

VVV
e


 (S12.1)  

with 

 

 ( )( )( ))(1)(1)(1)( 0 SXWSXWSSSiSiX ppttttVVV −−−+−++=   (S12.2) 

where:  

V V ViX iX 2 iX 1= −  - difference in meter indications, 

Vi X 1, Vi X 2
 - indication of the meter at the beginning of the measurement and 

at the end of the measurement, 

1XiV ,
2XiV  - corrections due to the finite resolution of the meter indication, 

XV  - volume that passed the meter during the measurement under the 

prevailing conditions, i.e., pressure pX  and temperature tX , at 

the inlet of the meter, 

SiV  - volume indicated at the neck scale of the collecting tank at the 
end of the measurement, 

SiV  - correction of the volume indicated at the neck scale of the 
collecting tank due to the finite resolution of the scale, 

S  - cubic thermal expansion coefficient of the material of the 
collecting tank, 

St  - temperature of the collecting tank, 

0t  - reference temperature at which the collecting tank has been 
calibrated, 

W  - cubic thermal expansion coefficient of water, 

Xt  - temperature of the water at the inlet of the meter, 

W  - compressibility of water, 

Sp  - pressure in the collecting tank (it is zero if excess pressure is 
considered) 

Xp  - pressure of the water at the inlet of the meter. 

 

S12.3 Collecting tank (
SiV , 0t ) 

The calibration certificate states that the neck scale indicates the volume of 200 l at 

the reference temperature C20 =0t  with an associated relative expanded 

measurement uncertainty of 0,1 % ( 2=k ). The expanded measurement uncertainty 

associated with the value is 0,2 l ( 2=k ). 

 

S12.4 Resolution of the collecting tank scale (
SiV ) 

The water level of the collecting tank can be determined to within 1 mm. With the 

scale factor of the tank of 0,02 l/mm the maximum deviation of the volume of water in 

the collecting tank from the observed indicated value is estimated to be within 0,02 l. 

 

 

S12.5 Temperature of the water and the collecting tank ( S , St ) 

The temperature of the water in the collecting tank is determined to be 15 C within 

2 K. The stated limits cover all possible sources of uncertainty, such as calibration 
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of temperature sensors, resolution in reading and temperature gradients in the tank. 

The cubic thermal expansion coefficient of the tank material (steel) is taken from a 

material handbook to be a constant equal to 16 K1051 −−=S  in the temperature 

interval considered. Since there is no uncertainty statement accompanying this value 

it is assumed to be known to within its least significant digit. Unknown deviations are 

considered to be within the rounding limits of 
16 K105,0 −− . 

 

S12.6 Temperature of the water at the meter ( W , Xt ) 

The temperature of the water at the inlet of the meter is determined to be 16 C within 

2 K. The stated limits cover all possible sources of uncertainty, such as contributions 

from calibration of sensors, resolution in reading and small temperature changes 

during one measurement run. The cubic expansion coefficient of water is taken from 

a material handbook to be a constant equal to 13 K1015,0 −−=W  in the 

temperature interval considered. Since there is no uncertainty statement 

accompanying this value it is assumed to be known to within its least significant digit. 

Unknown deviations are considered to be within the rounding limits of ±0,00510-3 K-

1. 

 

S12.7 Pressure difference of the water between the meter and the tank (W , Sp , Xp ) 

The excess pressure of the water supplied to the inlet of the meter is 500 kPa with 

relative deviations not larger than 10 %. On its way from the inlet to the collecting 

tank, the water expands to excess pressure 0 kPa (atmospheric pressure condition). 

The compressibility of water is taken from a material handbook to be a constant equal 

to 
16 kPa1046,0 −−=W  in the temperature interval considered. Since there is no 

uncertainty statement accompanying this value, it is assumed to be known to within 

its least significant digit. Unknown deviations are considered to be within the rounding 

limits of 
16 kPa10005,0 −− . 

 

S12.8 Correlation 

None of the input quantities is considered to be correlated to any significant extent. 
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S12.9 Uncertainty budget ( XV ) 

 

quantity 

 

X i
 

estimate 

 

xi
 

standard 

uncertainty 

u xi( )  

probability 

distribution 

 

sensitivity 

coefficient 

ci
 

uncertainty 

contribution 

u yi ( )  

SiV  200,00 l 0,10 l normal 1,0 0,10 l 

SiV  0,0 l 0,0115 l rectangular 1,0 0,0115 l 

S  5110-6 K-1 0,2910-6 K-1 rectangular -1000 lK -0,2910-3 l 

St  15C 1,15 K rectangular -0,0198 lK-1 -0,0228 l 

W  0,1510-3 K-1 2,910-6 K-1 rectangular 200 lK 0,5810-3 l 

Xt  16C 1,15 K rectangular 0,0300 lK-1 0,0346 l 

W  0,4610-6  

kPa-1 

2,910-9 kPa-1 rectangular -1,00105   

lkPa 

-0,2910-3 l 

Xp  500 kPa 29 kPa rectangular -9,210-5  

lkPa-1 

-0,0027 l 

Sp  0,0 Pa - - - - 

XV  199,93 l    0,109 l 

 
The standard uncertainty of measurement associated with the result is clearly 

dominated by the volume indication at the neck scale of the collecting tank. The final 

distribution is essentially normal. This must be kept in mind in the further processing 

of the uncertainty evaluation. 

 

S12.10 Indication of the meter (
XiV ,

1XiV ,
2XiV ) 

The water meter to be calibrated has a resolution of 0,2 l resulting in the limits  0,1 l 

in both readings for the maximum deviations resulting from the meter resolution. 

 

S12.11 Uncertainty budget ( Xe ) 

 

quantity 
X i

 
estimate 

xi
 

standard 
uncertainty 

u xi( )  

probability 
distribution 

 

sensitivity 
coefficient 

ci
 

uncertainty 
contribution 

u yi ( )  

XiV  200,0 l - nominal - - 

1XiV  0,0 l 0,058 l rectangular -5,010-3 -0,2910-3 l 

2XiV  0,0 l 0,058 l rectangular 5,010-3 0,2910-3 l 

XV  199,93 l 0,109 l normal -5,010-3 -0,5510-3 l 

Xe  0,000 3    0,6810-3 
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S12.12 Repeatability of the meter 

The relative error of indication of the water meter to be calibrated, determined at the 

same flow rate of 2500 l/h, shows considerable scatter. For that reason, the relative 

error of indication is determined three times. The results of these three runs are 

treated as independent observations 
jeX
 in the model that determines the average 

error of indication 
avXe : 

 

 𝑒𝑋av = 𝑒𝑋 + 𝐼/𝑒𝑋 

Hence 

 𝐼/𝑒𝑋 = 𝑒𝑋𝑎𝑣 − 𝑒𝑋 

  (S12.3) 

 

where:  

 

Xe  - relative error of indication of a single run, 

Xe  - correction of the relative error of indication obtained in the different 
runs due to the lack of repeatability of the meter. 

 

S12.13 Measurements ( Xe ) 

 

No. observed relative  
error of indication 

relative error due to 
lack of repeatability 

1 0,000 3 0,0007 

2 0,000 5 0,0005 

3 0.002 2 -0,0012 

  

average error of indication 
avXe is the arithmetic mean of the three results:  

avXe = 0,001 

 

average error due to lack of repeatability:   

 

experimental standard deviation:   𝑠(𝐼/𝑒𝑋
) = 0,001 

 

standard uncertainty:      
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S12.14 Uncertainty budget (
avXe ) 

 

quantity 

 

iX  

estimate 

 

ix  

standard 

uncertainty 

u xi( )  

degrees 
of 

freedom 

eff  

probability 

distribution 

 

sensitivity 

coefficient 

ci
 

uncertainty 

contribution 

u yi ( )  

Xe  0 0,6010-3 2 normal 1,0 0,6010-3 

Xe  0,001 0,6810-3   normal 1,0 0,6810-3 

avXe  0,001  10   0,9110-3 

 
S12.15 Expanded uncertainty 

Because of the small number of effective degrees of freedom of the standard 

uncertainty associated with the mean relative error of indication the standard 

coverage factor has to be modified according to table E1 

 

  

 

S12.16 Reported result 

The average relative error of indication of the water meter determined at a flow rate 

of 2500 l/h is 0,001  0,002. 

 

The reported expanded uncertainty of measurement is stated as the standard 

uncertainty of measurement multiplied by the coverage factor k such that the 

coverage probability corresponds to approximately 95 %. 

 

S13 CALIBRATION OF A RING GAUGE WITH A NOMINAL DIAMETER OF 90 

MM 

 
S13.1 A steel ring gauge of Dx = 90 mm nominal inner diameter is calibrated applying the 

procedure introduced in EURAMET cg-6 Version 2.0 (03/2011)” (previously EAL-

G29:1997). A length comparator of the Abbe type and a steel setting ring, whose 

nominal inner diameter (Ds = 40 mm) differs significantly from that of the ring to be 

calibrated, are employed. In this case the length comparator and the steel setting ring 

both take the role of working standards. The rings are gently clamped sequentially on 

a 4-degrees of freedom table, which includes all position elements for aligning the test 

pieces. The rings are contacted at several points diametrically apart by two C-shaped 

arms, fixed on the steady and the measuring spindle, respectively. The C-shaped 

arms are supplied with spherical contact tips. The measuring force is generated by a 

tension weight ensuring a constant force of nominally 1,5 N over the whole measuring 

range. The measuring spindle is rigidly connected with the gauge head of a steel line 

scale of resolution 0,1 µm. The line scale of the comparator has been verified 

periodically to meet the manufacturer’s specification of maximum permissible error. 
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The ambient temperature is monitored in order to maintain the environmental 

conditions stated by calibration procedure. The temperature in the comparator 

working volume is maintained at 20 °C 0,5 K. Care is taken to ensure that the rings 

and the line scale (ruler) maintain the monitored temperature throughout the 

calibration. 

 

S13.2 The diameter dX of the ring to be calibrated at the reference temperature C= 200t  

is obtained from the relationship: 

 

 
AEPTiSX lllllldd  ++++++=  (S13.1) 

 

where: 

 

Sd  - diameter of the reference setting ring at the reference temperature, 

l  - observed difference in displacement of the measuring spindle when the 
contact tips touch the inner surface of the rings at two diametrically 
apart points, 

il  - correction for the errors of indication of the comparator, 

Tl  - correction due to the temperature effects of the ring to be calibrated, the 
reference setting ring and the comparator line scale,  

 lP  - correction due to coaxial misalignment of the probes with respect to the 
measuring line, 

El  - correction due to the difference in elastic deformations of the ring to be 
calibrated and the reference setting ring, 

Al  - correction due to the difference of the Abbe errors of the comparator 
when the diameters of the ring to be calibrated and the reference setting 
ring are measured. 

 

S13.3 Working standard ( dS ) 

The inner diameter of the setting ring used as the working standard together with the 

associated expanded uncertainty of measurement is given in the calibration certificate 

as 40,0007 mm ± 0,2 µm (coverage factor k = 2). 

 

S13.4 Comparator ( il ) 

The corrections for the errors of indication of the line scale (ruler) were determined by 

the manufacturer and prestored electronically. Any residuals are within the 

manufacturers' specification of )105,1m3,0( i

6 l+ −
 with il  being the indicated 

length. The specifications are ascertained by periodical verifications. For the actual 

length difference mm50=− SX DD  unknown residuals are estimated to be within 

±(0,375)µm. 

 

S13.5 Temperature corrections ( Tl ) 

Throughout the measurement care is taken to ensure that the ring to be calibrated, 

the setting ring and the comparator scale maintain the monitored temperature. From 

previous measurements and general experience with the measurement system it can 

be ascertained that the deviations of temperatures of the ring to be calibrated, the 
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setting ring and the comparator scale from ambient temperature stay within ±0,2 K. 

The ambient temperature of the measuring room, however, is estimated to be within 

±0,5 K. The knowledge on the measurement, therefore, is best described by the 

deviation of the ambient temperature from the reference temperature and the 

deviations of the temperatures of the ring to be calibrated, the setting ring and the 

comparator scale (ruler) from the ambient temperature. The correction Tl  due to 

temperature influences is determined from the model: 

 

  

 (S13.2) 

 

where: 

 

DX , DS  
- nominal diameters of the ring to be calibrated and the reference 

setting ring, 

X , S , R  - linear thermal expansion coefficients of the ring to be calibrated, the 
reference setting ring and the comparator line scale (ruler), 

0ttt −= AA  - deviations of the ambient temperature of the measuring room from 

the reference temperature t0 20= C , 

Xt , St , Rt  
- deviations of the temperature of the ring to be calibrated, the 

reference setting ring and the comparator line scale (ruler) from 
ambient temperature 

 
Since the expectations of the four temperature differences entering eq. (S13.2) are 

zero, the usual linearized version will not include effects of the measurement 

uncertainty associated with the values of the three linear thermal expansion 

coefficients. As depicted in section S4.13 the non-linear version has to be used to 

determine the standard uncertainty associated with the four product terms: 

 

 

( )    

  

  

  

l D D t

l D t

l D t

l D D t

TA S S R X X R A

TS S S S

TX X X X

TR S X R R

=  − −  − 

=  

=  

= −  

( ) ( )

( )



 (S13.3) 

 

Based on the calibration certificate of the setting ring, on the manufacturer’s data for 

the ring to be calibrated and the comparator scale, the linear thermal expansion 

coefficients are assumed to be within the interval (11,5 ± 1,0) 10-6 K-1. Using this value 

and the limits of temperature variation stated at the beginning, the standard 

uncertainties associated with the four product terms are  , 

 ,  and . The standard 

uncertainty associated with the combined temperature corrections is derived from 

these values with the use of the following uncertainty sub-budget: 
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quantity 
 

X i
 

estimate 
 

xi
 

standard 
uncertainty 

u xi( )  

probability 
distribution 

 

sensitivity 
coefficient 

ci
 

uncertainty 
contribution 

u yi ( )  

 lTA
 0,0 m 0,018 m - 1,0 0,018 m 

 lTS
 0,0 m 0,053 m - 1,0 0,053 m 

 lTX
 0,0 m 0,12 m - 1,0 0,12 m 

 lTR
 0,0 m 0,066 m - 1,0 0,066 m 

 lT
 0,0 m    0,15 m 

 

S13.6 Coaxiality correction ( lP ) 

The deviation from coaxiality of the two spherical probes and the measuring line is 

assumed to be within ±20 µm. Using the equations stated in the mathematical note 

(S13.13) the correction due to possible non-coaxiality and the associated standard 

uncertainty of measurement is given by 
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 (S13.5) 

 

Here c  is the small distance of the measured cord from the centre of the ring. The 

values resulting for the correction and the associated standard measurement 

uncertainty are m004,0 −Pl  and m0065,0)( Plu  . As can been seen from 

the uncertainty budget (S13.10), these values are two orders of magnitude smaller 

than the remaining uncertainty contributions so that their influence need not be taken 

into account under the current measurement conditions. 

 

S13.7 Elastic deformation correction ( El ) 

The elastic deformation of the ring to be calibrated or the reference setting ring are 

not determined during the current measurement. From previous experience, however, 

the effects resulting from elastic deformations are estimated to be within ±0,03 µm. 

 

S13.8 Abbe error correction ( Al ) 

The actual values of the Abbe errors of the comparator are not determined during the 

current measurement. From experience and periodical verification data of the 

comparator, however, the effects due to Abbe errors are estimated to be within 

±0,02 µm. 

 

S13.9 Measurements (l ) 

The following observations are made of the inner diameter of the unknown and the 

setting ring: 
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No Object Observation Measurand 

1 reference  
setting ring 

0 
during this step the 

comparator display is 
zeroed 

diameter in the nominal direction of the 
symmetry plane orthogonal to the 
cylinder axis 

2 ring to be  
calibrated 

49,999 35 mm diameter in the nominal direction of the 
symmetry plane orthogonal to the 
cylinder axis 

3 ring to be  
calibrated 

49,999 11 mm diameter in the symmetry plane 
orthogonal to the cylinder axis rotated 
around the axis with respect to the 
nominal direction by +1 mm on the 
circumference 

4 ring to be  
calibrated 

49,999 72 mm diameter in the symmetry plane 
orthogonal to the cylinder axis rotated 
around the axis with respect to the 
nominal direction by -1 mm on the 
circumference. 

5 ring to be  
calibrated 

49,999 54 mm diameter in the nominal direction 
translated to the plane parallel to 
symmetry plane orthogonal to the 
cylinder axis by 1 mm upwards 

6 ring to be  
calibrated 

49,999 96 mm diameter in the nominal direction 
translated to the plane parallel to 
symmetry plane orthogonal to the 
cylinder axis by 1 mm downwards 

 
The observations may be divided into two groups: the observation of the diameter of 

the setting ring (observation no 1) that is used to set the comparator display to zero 

and the observation of the diameter of the ring to be calibrated (observations no 2 to 

no 6) that give the difference in diameters: 
 

arithmetic mean:     mm54999,49=l  

 

standard deviation of a single observation:  m33,0)( =ls  

 

standard deviation of the mean:   m15,0
5

)(
)( =


=

ls
ls  

 

The standard deviation of a single observation m18,0)( =ls  takes into account 

effects due to form deviations of the ring to be calibrated as well as due to the 

repeatability of the comparator. To obtain the standard uncertainty of measurement 

to be associated with the observed mean difference of the diameters, the uncertainty 

resulting from the zeroing of the comparator display must also be taken into account. 

This is deduced from the pooled estimate of the standard deviation m25,0)0( =ps  

obtained in a prior measurement under the same conditions of measurement. The 

resulting standard measurement uncertainty to be associated with the observed 

diameter difference is: 

 m30,0)0()()( 22 =+= pslslu  
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S13.10 Uncertainty budget ( dX ) 

 

quantity 

 

X i
 

estimate 

 

xi
 

standard 

uncertainty 

u xi( )  

probability 

distribution 

 

sensitivity 

coefficient 

ci
 

uncertainty 

contribution 

u yi ( )  

dS  40,000 7 mm 0,10 m normal 1,0 0,10 m 

l  49,999 55 mm 0,30 m normal 1,0 0,30 m 

il  0,0 mm 0,22 m rectangular 1,0 0,22 m 

Tl  0,0 mm 0,15 m normal 1,0 0,15 m 

Pl  0,000 004 mm 0,0065 m rectangular 1,0 0,0065 m 

El  0,0 mm 0,017 m rectangular 1,0 0,017 m 

Al  0,0 mm 0,012 m rectangular 1,0 0,012 m 

Xd  90,000 25 mm    0,411 m 

 
S13.11 Expanded uncertainty 

 

  
 

S13.12 Reported result 

The diameter of the ring gauge is (90,000 3 ± 0,000 9) mm. 

 

The reported expanded uncertainty of measurement is stated as the standard 

uncertainty of measurement multiplied by the coverage factor k such that the 

coverage probability corresponds to approximately 95 %. 

 

S13.13 Mathematical note on non-coaxiality 

Since it is not possible to make an exact adjustment of the rings with respect to the 

measuring axis of the comparator, the quantity determined in the measurement is a 

chord of the respective ring in the proximity of its diameter. The length 'd  of this chord, 

which is observed in the measurement, is related to the diameter of the ring d  by 

 







−= 2)(

2

1
1)cos('  ddd  (S13.6) 

 

where   is the small angle that complements half of the central angle of the chord 

to 2/ . This angle is related on the other hand to the small distance c  of the chord 

form the centre of the ring by 

 

  = ddc
2

1
)sin(

2

1
 (S13.7) 
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so that eq. (S13.6) may be rewritten as 

 
D

c
dd

2)(
2'


−  (S13.8) 

where the diameter d  of the ring in the ratio has been replaced by its nominal 

diameter D  since the nominator of the ratio is a small quantity already. The best 

estimate of the diameter is obtained by taking the expectation of the last relation to 

be 
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2 
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Here it has been taken into account that the small distance c  has zero expectation. 

It must also be kept in mind that the meaning of d , 'd  and c  in eq. (S13.8) and eq. 

(S13.9) is not identical; whereas in eq. (S13.8) these symbols represent the not-

exactly known quantities or random variables, in eq. (S13.9) they stand for the 

expectations of these quantities. Since the variance of a random variable equals the 

expectation of the square of its deviation from the respective expectation, the square 

of the standard measurement uncertainty to be associated with the diameter of the 

ring is, according to eq. (S13.8), 
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with 
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being the ratio of the 4th order centred moment to the square of its 2nd order centred 

moment of the small distance c . This ratio depends on the distribution that is 

assumed for c . It takes the value 5/9=  if c  is assumed to be rectangularly 

distributed so that in this case the standard measurement uncertainty to be associated 

with the diameter is expressed by 
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